凝聚态物理的格林函数理论(英文版)
出版时间:2012年版
内容简介
《凝聚态物理的格林函数理论》详细介绍了凝聚态物理中常用的单体格林函数和多体格林函数的基本理论.对于多体格林函数,介绍了费曼图形技术和运动方程法。对于格林函数在一些方面的应用做了介绍,主要是在弱耦合超导体、海森伯磁性系统和介观输运方面的应用。《凝聚态物理的格林函数理论》对于概念的说明与公式的推导力求详尽、全面,内容由浅入深,便于读者学习,读者需要具备量子力学和统计力学的基本知识。
目录
Part I Green's Functions in Mathematical Physics
Chapter 1 Time-Independent Green's Functions
1.1 Formalism
1.2 Examples
1.2.1 3-dcase
1.2.2 2-dcase
1.2.3 1-dcase
Chapter 2 Time-dependent Green's Functions ~
2.1 First-Order Case of Time-Derivative ~
2.2 Second-Order Case of Time-Derivative
Part II One-Body Green's Functions
Chapter 3 Physical Significance of One-Body Green'sFunctions
3.1 One-Body Green's Functions
3.2 The Free-Particle Case
3.2.1 3-dcase
3.2.2 2-dcase
3.2.3 1-dcase
Chapter 4 Green's Functions and Perturbation Theory
4.1 Time-Independent Case
4.2 Time-Dependent Case
4.3 Application: Scattering Theory (E~0)
4.4 Application: Bound States in Shallow Potential Wells(EGO)
4.4.1 3-d space
4.4.2 2-d space
4.4.3 1-d space
Chapter 5 Green's Functions for Tight-BindingHamiltonians
5.1 Tight-Binding Hamiltonians
5.2 Lattice Green's functions
……