粒子物理学家用非阿贝尔离散对称导论(英文影印版)
出版时间:2014年版
丛编项: 中外物理学精品书系
内容简介
《中外物理学精品书系:粒子物理学家用非阿贝尔离散对称导论(影印版)》首先详细地讲解离散对称群的共轭类划分、表示论等相关理论,之后介绍了离散对称在粒子物理标准模型以及超出标准模型的理论上的应用。本书适合粒子物理专业的研究生和科研工作者用作参考。
目录
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Basics of Finite Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3 SN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 22
3.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 S4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 27
3.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 29
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 AN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 35
4.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 37
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 T _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Characters andRepresentations . . . . . . . . . . . . . . . . . . . 44
5.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 DN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1 DN with N Even . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 52
6.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 DN with N Odd . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 56
6.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 56
6.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 D4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 D5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7 QN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1 QN with N = 4n . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 62
7.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 62
7.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 QN with N = 4n+2 . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 64
7.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 64
7.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 65
7.3 Q4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4 Q6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8 QD2N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1 Generic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 70
8.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 70
8.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 QD16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9 Σ(2N2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.1 Generic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 75
9.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 76
9.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 77
9.2 Σ(18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.3 Σ(32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
9.4 Σ(50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10 Δ(3N2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.1 Δ(3N2) with N/3 _= Integer . . . . . . . . . . . . . . . . . . . . . 87
10.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 88
10.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 89
10.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 89
10.2 Δ(3N2) with N/3 Integer . . . . . . . . . . . . . . . . . . . . . . 91
10.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 91
10.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 92
10.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 93
10.3 Δ(27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11 TN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.1 Generic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 98
11.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 99
11.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 99
11.2 T7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.3 T13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
11.4 T19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
12 Σ(3N3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
12.1 Generic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
12.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 110
12.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 111
12.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 112
12.2 Σ(81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13 Δ(6N2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
13.1 Δ(6N2) with N/3 _= Integer . . . . . . . . . . . . . . . . . . . . . 123
13.1.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 123
13.1.2 Characters andRepresentations . . . . . . . . . . . . . . . 126
13.1.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 128
13.2 Δ(6N2) with N/3 Integer . . . . . . . . . . . . . . . . . . . . . . 131
13.2.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 131
13.2.2 Characters andRepresentations . . . . . . . . . . . . . . . 133
13.2.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 134
13.3 Δ(54) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
13.3.1 ConjugacyClasses . . . . . . . . . . . . . . . . . . . . . . 138
13.3.2 Characters andRepresentations . . . . . . . . . . . . . . . 139
13.3.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . 141
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
14 Subgroups and Decompositions of Multiplets . . . . . . . . . . . . . 147
14.1 S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
14.1.1 S3→Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
14.1.2 S3→Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
14.2 S4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14.2.1 S4→S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
14.2.2 S4→A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
14.2.3 S4→Σ(8) . . . . . . . . . . . . . . . . . . . . . . . . . . 151
14.3 A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
14.3.1 A4→Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
14.3.2 A4→Z2 ×Z2 . . . . . . . . . . . . . . . . . . . . . . . . 153
14.4 A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.4.1 A5→A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.4.2 A5→D5 . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.4.3 A5→S3 _ D3 . . . . . . . . . . . . . . . . . . . . . . . 154
14.5 T _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
14.5.1 T _→Z6 . . . . . . . . . . . . . . . . . . . . . . . . . . 154
14.5.2 T _→Z4 . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14.5.3 T _→Q4 . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14.6 General DN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
14.6.1 DN →Z2 . . . . . . . . . . . . . . . . . . . . . . . . . 156
14.6.2 DN →ZN . . . . . . . . . . . . . . . . . . . . . . . . . 157
14.6.3 DN →DM . . . . . . . . . . . . . . . . . . . . . . . . . 157
14.7 D4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
14.7.1 D4→Z4 . . . . . . . . . . . . . . . . . . . . . . . . . . 158
14.7.2 D4→Z2 ×Z2 . . . . . . . . . . . . . . . . . . . . . . . 159
14.7.3 D4→Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . 159
14.8 General QN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
14.8.1 QN →Z4 . . . . . . . . . . . . . . . . . . . . . . . . . 160
14.8.2 QN →ZN . . . . . . . . . . . . . . . . . . . . . . . . . 161
14.8.3 QN →QM . . . . . . . . . . . . . . . . . . . . . . . . . 161
14.9 Q4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
14.9.1 Q4→Z4 . . . . . . . . . . . . . . . . . . . . . . . . . . 162
14.10 QD2N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
14.10.1 QD2N →Z2 . . . . . . . . . . . . . . . . . . . . . . . . 163
14.10.2 QD2N →ZN . . . . . . . . . . . . . . . . . . . . . . . . 163
14.10.3 QD2N →DN/2 . . . . . . . . . . . . . . . . . . . . . . . 163
14.11 General Σ(2N2) . . . . . . . . . . . . . . . . . . . . . . . . . . 164
14.11.1 Σ(2N2)→Z2N . . . . . . . . . . . . . . . . . . . . . . 164
14.11.2 Σ(2N2)→ZN ×ZN . . . . . . . . . . . . . . . . . . . 164
14.11.3 Σ(2N2)→DN . . . . . . . . . . . . . . . . . . . . . . 165
14.11.4 Σ(2N2)→QN . . . . . . . . . . . . . . . . . . . . . . 166
14.11.5 Σ(2N2)→Σ(2M2) . . . . . . . . . . . . . . . . . . . . 166
14.12 Σ(32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
14.13 General Δ(3N2) . . . . . . . . . . . . . . . . . . . . . . . . . . 168
14.13.1 Δ(3N2)→Z3 . . . . . . . . . . . . . . . . . . . . . . . 169
14.13.2 Δ(3N2)→ZN ×ZN . . . . . . . . . . . . . . . . . . . 169
14.13.3 Δ(3N2)→TN . . . . . . . . . . . . . . . . . . . . . . . 170
14.13.4 Δ(3N2)→Δ(3M2) . . . . . . . . . . . . . . . . . . . . 170
14.14 Δ(27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
14.14.1 Δ(27)→Z3 . . . . . . . . . . . . . . . . . . . . . . . . 172
14.14.2 Δ(27)→Z3 ×Z3 . . . . . . . . . . . . . . . . . . . . . 172
14.15 General TN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
14.15.1 TN →Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . 173
14.15.2 TN →ZN . . . . . . . . . . . . . . . . . . . . . . . . . 173
14.16 T7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
14.16.1 T7→Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . 174
14.16.2 T7→Z7 . . . . . . . . . . . . . . . . . . . . . . . . . . 175
14.17 General Σ(3N3) . . . . . . . . . . . . . . . . . . . . . . . . . . 175
14.17.1 Σ(3N2)→ZN ×ZN ×ZN . . . . . . . . . . . . . . . . 175
14.17.2 Σ(3N3)→Δ(3N2) . . . . . . . . . . . . . . . . . . . . 175
14.17.3 Σ(3N3)→Σ(3M3) . . . . . . . . . . . . . . . . . . . . 176
14.18 Σ(81) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
14.18.1 Σ(81)→Z3 ×Z3 ×Z3 . . . . . . . . . . . . . . . . . . 177
14.18.2 Σ(81)→Δ(27) . . . . . . . . . . . . . . . . . . . . . . 177
14.19 General Δ(6N2) . . . . . . . . . . . . . . . . . . . . . . . . . . 178
14.19.1 Δ(6N2)→Σ(2N2) . . . . . . . . . . . . . . . . . . . . 179
14.19.2 Δ(6N2)→Δ(3N2) . . . . . . . . . . . . . . . . . . . . 180
14.19.3 Δ(6N2)→Δ(6M2) . . . . . . . . . . . . . . . . . . . . 180
14.20 Δ(54) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
14.20.1 Δ(54)→S3 ×Z3 . . . . . . . . . . . . . . . . . . . . . 182
14.20.2 Δ(54)→Σ(18) . . . . . . . . . . . . . . . . . . . . . . 182
14.20.3 Δ(54)→Δ(27) . . . . . . . . . . . . . . . . . . . . . . 183
15 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
15.1 Generic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
15.2 ExplicitCalculations . . . . . . . . . . . . . . . . . . . . . . . . 189
15.2.1 S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
15.2.2 S4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
15.2.3 A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
15.2.4 A5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
15.2.5 T _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.2.6 DN (N Even) . . . . . . . . . . . . . . . . . . . . . . . . 193
15.2.7 DN (N Odd) . . . . . . . . . . . . . . . . . . . . . . . . 194
15.2.8 QN (N = 4n) . . . . . . . . . . . . . . . . . . . . . . . . 194
15.2.9 QN (N = 4n+2) . . . . . . . . . . . . . . . . . . . . . 195
15.2.10 QD2N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
15.2.11 Σ(2N2) . . . . . . . . . . . . . . . . . . . . . . . . . . 197
15.2.12 Δ(3N2) (N/3 _= Integer) . . . . . . . . . . . . . . . . . . 198
15.2.13 Δ(3N2) (N/3 Integer) . . . . . . . . . . . . . . . . . . . 199
15.2.14 TN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
15.2.15 Σ(3N3) . . . . . . . . . . . . . . . . . . . . . . . . . . 201
15.2.16 Δ(6N2) (N/3 _= Integer) . . . . . . . . . . . . . . . . . . 202
15.2.17 Δ(6N2) (N/3 Integer) . . . . . . . . . . . . . . . . . . . 203
15.3 CommentsonAnomalies . . . . . . . . . . . . . . . . . . . . . . 203
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
16 Non-Abelian Discrete Symmetry in Quark/Lepton Flavor Models . . 205
16.1 NeutrinoFlavorMixingandNeutrinoMassMatrix . . . . . . . . 205
16.2 A4 FlavorSymmetry . . . . . . . . . . . . . . . . . . . . . . . . 207
16.2.1 RealizingTri-BimaximalMixingofFlavors . . . . . . . . 207
16.2.2 Breaking Tri-Bimaximal Mixing . . . . . . . . . . . . . . 209
16.3 S4 Flavor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
16.4 AlternativeFlavorMixing . . . . . . . . . . . . . . . . . . . . . 219
16.5 CommentsonOtherApplications . . . . . . . . . . . . . . . . . 222
16.6 CommentonOriginsofFlavorSymmetries . . . . . . . . . . . . 223
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Appendix A Useful Theorems . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Appendix B Representations of S4 in Different Bases . . . . . . . . . . . 237
B.1 Basis I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
B.2 Basis II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
B.3 Basis III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
B.4 Basis IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Appendix C Representations of A4 in Different Bases . . . . . . . . . . 245
C.1 Basis I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
C.2 Basis II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Appendix D Representations of A5 in Different Bases . . . . . . . . . . 247
D.1 Basis I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
D.2 Basis II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Appendix E Representations of T _ in Different Bases . . . . . . . . . . . 261
E.1 Basis I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
E.2 Basis II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Appendix F Other Smaller Groups . . . . . . . . . . . . . . . . . . . . . 265
F.1 Z4 _ Z4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
F.2 Z8 _ Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
F.3 (Z2 ×Z4) _ Z2 (I) . . . . . . . . . . . . . . . . . . . . . . . . . 270
F.4 (Z2 ×Z4) _ Z2 (II) . . . . . . . . . . . . . . . . . . . . . . . . . 272
F.5 Z3 _ Z8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
F.6 (Z6 ×Z2) _ Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
F.7 Z9 _ Z3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285