现代粒子物理学导论(第三版 英文影印版)
出版时间:2014年版
丛编项: 中外物理学精品书系
内容简介
《中外物理学精品书系:现代粒子物理学导论(第三版)(英文影印版)》涵盖了粒子物理各种方向,包括量子电动力学、夸克模型、标准模型等等。在理论和实验两方面都进行了系统讲解。此外,本书还着重讨论了天体物理、宇宙学和粒子物理学的交叉研究,即天体粒子物理学。
《中外物理学精品书系:现代粒子物理学导论(第三版)(英文影印版)》适合粒子物理、核物理、天体物理等领域的研究者和研究生阅读。
目录
Preface vii
1. Introduction 1
1.1 Fundamental Forces . 1
1.1.1 The Gravitational Force 2
1.1.2 The Weak Nuclear Force 2
1.1.3 The Electromagnetic Force . 3
1.1.4 The Strong Nuclear Force 4
1.2 Relative Strength of Four Fundamental Forces 4
1.3 Range of the Three Basic Forces 5
1.4 Classi_cation of Matter . 7
1.5 Strong Color Charges 9
1.6 Fundamental Role of \\Charges in the Uni_cation of Forces 10
1.7 Strong Quark-Quark Force . 16
1.8 Grand Uni_cation 18
1.9 Units and Notation 19
1.10 Problems . 21
1.11 References . 21
2. Scattering and Particle Interaction 23
2.1 Introduction 23
2.2 Kinematics of a Scattering Process . 26
2.3 Interaction Picture 31
2.4 Scattering Matrix (S-Matrix) 32
2.5 Phase Space 36
2.6 Examples . 39
2.6.1 Two-body Scattering 39
2.6.2 Three-body Decay 41
2.7 Electromagnetic Interaction . 50
2.8 Weak Interaction . 52
2.9 Hadronic Cross-section 55
2.10 Problems . 56
2.11 References . 58
3. Space-Time Symmetries 59
3.1 Introduction 59
3.1.1 Rotation and SO(3) Group . 60
3.1.2 Translation 62
3.1.3 Lorentz Group 63
3.2 Invariance Principle . 65
3.2.1 U Continuous 65
3.2.2 U is Discrete (e.g. Space Reection) 66
3.3 Parity . 66
3.4 Intrinsic Parity 68
3.4.1 Intrinsic Parity of Pion . 70
3.5 Parity Constraints on S-Matrix for Hadronic Reactions 71
3.5.1 Scattering of Spin 0 Particles on Spin 1
2 Particles 71
3.5.2 Decay of a Spin 0+ Particle into Three Spinless
Particles Each Having Odd Parity . 72
3.6 Time Reversal 73
3.6.1 Unitarity . 74
3.6.2 Reciprocity Relation . 75
3.7 Applications 76
3.7.1 Detailed Balance Principle . 76
3.8 Unitarity Constraints 77
3.8.1 Two-Particle Partial Wave Unitarity 79
3.9 Problems . 85
3.10 References . 90
4. Internal Symmetries 91
4.1 Selection Rules and Globally Conserved Quantum Numbers 91
4.2 Isospin . 97
4.2.1 Electromagnetic Interaction and Isospin 100
4.2.2 Weak Interaction and Isospin 101
4.3 Resonance Production 101
4.3.1 _-resonance . 103
4.3.2 Spin of _ . 103
4.4 Charge Conjugation . 107
4.5 G-Parity 112
4.6 Problems . 113
4.7 References . 117
5. Unitary Groups and SU(3) 119
5.1 Unitary Groups and SU(3) . 119
5.2 Particle Representations in Flavor SU(3) 124
5.2.1 Mesons 126
5.2.2 Baryons 128
5.3 U-Spin . 132
5.4 Irreducible Representations of SU(3) 134
5.4.1 Young's Tableaux 135
5.5 SU(N) . 141
5.6 Applications of Flavor SU(3) 145
5.6.1 SU(3) Invariant BBP Couplings 145
5.6.2 VPP Coupling 146
5.7 Mass Splitting in Flavor SU(3) . 148
5.8 Problems . 154
5.9 References . 158
6. SU(6) and Quark Model 159
6.1 SU(6) . 159
6.1.1 SU(6) Wave Function for Mesons . 160
6.2 Magnetic Moments of Baryons . 164
6.3 Radiative Decays of Vector Mesons . 170
6.4 Radiative Decays (Complementary Derivation) 176
6.4.1 Mesonic Radiative Decays V = P + . 176
6.4.2 Baryonic Radiative Decay . 177
6.5 Problems . 179
6.6 References . 180
7. Color, Gauge Principle and Quantum Chromodynamics 181
7.1 Evidence for Color 181
7.2 Gauge Principle 184
7.2.1 Aharanov and Bohm Experiment . 186
7.2.2 Gauge Principle for Relativistic Quantum Mechanics 188
7.3 Non-Abelion Local Gauge Transformations (Yang-Mills) . 190
7.4 Quantum Chromodynamics (QCD) . 194
7.4.1 Conserved Current . 197
7.4.2 Experimental Determinations of _s(q2) and
Asymptotic Freedom of QCD 199
7.5 Hadron Spectroscopy . 202
7.5.1 One Gluon Exchange Potential . 202
7.5.2 Long Range QCD Motivated Potential 205
7.5.3 Spin-Spin Interaction 209
7.6 The Mass Spectrum . 209
7.6.1 Meson Mass Relations 211
7.6.2 Baryon Mass Spectrum . 213
7.7 Problems . 217
7.8 References . 219
8. Heavy Flavors 221
8.1 Discovery of Charm . 221
8.1.1 Isospin 223
8.1.2 SU(3) Classi_cation . 223
8.2 Charm . 224
8.2.1 Heavy Mesons 224
8.2.2 The Fifth Quark Flavor: Bottom Mesons . 228
8.2.3 The Sixth Quark Flavor: The Top . 228
8.3 Strong and Radiative Decays of D_ Mesons 229
8.4 Heavy Baryons 232
8.5 Quarkonium 233
8.6 Leptonic Decay Width of Quarkonium . 237
8.7 Hadronic Decay Width 238
8.8 Non-Relativistic Treatment of Quarkonium 240
8.9 Observations . 245
8.10 Tetraquark 246
8.11 Problems . 249
8.12 References . 254
9. Heavy Quark E_ective Theory 255
9.1 E_ective Lagrangian . 255
9.2 Spin Symmetry of Heavy Quark . 259
9.3 Mass Spectroscopy for Hadrons with One Heavy Quark . 264
9.4 The P-wave Heavy Mesons: Mass Spectroscopy 269
9.5 Decays of P-wave Mesons 275
9.6 Problems . 277
9.7 References . 277
10. Weak Interaction 279
10.1 V ?? A Interaction 279
10.1.1 Helicity of the Neutrino . 281
10.2 Classi_cation of Weak Processes 281
10.2.1 Purely Leptonic Processes . 281
10.2.2 Semileptonic Processes . 283
10.2.3 Non-Leptonic Processes . 287
10.2.4 _-Decay . 288
10.2.5 Remarks . 289
10.2.6 Semi-Leptonic Processes 291
10.3 Baryon Decays 292
10.4 Pseudoscalar Meson Decays . 296
10.4.1 Pion Decay 296
10.4.2 Strangeness Changing Semi-Leptonic Decays . 297
10.5 Hadronic Weak Decays 299
10.5.1 Non-Leptonic Decays of Hyperons . 299
10.5.2 _I = 1/2 Rule for Hyperon Decays 302
10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic
Quark Model . 304
10.6 Problems . 307
10.7 References . 310
11. Properties of Weak Hadronic Currents and Chiral Symmetry 311
11.1 Introduction 311
11.2 Conserved Vector Current Hypothesis (CVC) . 311
11.3 Partially Conserved Axial Vector Current Hypothesis
(PCAC) 314
11.4 Current Algebra and Chiral Symmetry . 317
11.4.1 Explicit Breaking of Chiral Symmetry . 320
11.4.2 An Application of Chiral Symmetry to Non-
Leptonic Decays of Hyperons 323
11.5 Axial Anomaly 325
11.6 QCD Sum Rules . 327
11.7 Problems . 328
11.8 References . 329
12. Neutrino 331
12.1 Introduction 331
12.2 Intrinsic Properties of Neutrinos 332
12.3 Mass 332
12.3.1 Constraints on Neutrino Mass . 333
12.3.2 Dirac and Majorana Masses 337
12.3.3 Fermion Masses in the Standard Model (SM) and
See-saw Mechanism . 339
12.4 Neutrino Oscillations . 343
12.4.1 Mikheyev-Smirnov-Wolfenstein E_ect . 345
12.4.2 Evolution of Flavor Eigenstates in Matter . 349
12.5 Evidence for Neutrino Oscillations . 351
12.5.1 Disappearance Experiments 351
12.5.2 Appearance Experiments 351
12.6 Neutrino Mass Models and Mixing Matrix and Symmetries 355
12.7 Neutrino Magnetic Moment . 360
12.8 Problems . 362
12.9 References . 363
13. Electroweak Uni_cation 365
13.1 Introduction 365
13.2 Spontaneous Symmetry Breaking and Higgs Mechanism . 366
13.2.1 Higgs Mechanism 368
13.2.2 Gauge Symmetry Breaking for Chiral U1U2 Group 369
13.3 Renormalizability . 372
13.4 Electroweak Uni_cation . 374
13.4.1 Experimental Consequences of the Electroweak
Uni_cation 381
13.4.2 Need for Radiative Corrections . 382
13.4.3 Experiments which Determine sin2 _W 387
13.5 Decay Widths of W and Z Bosons . 389
13.6 Tests of Yang-Mills Character of Gauge Bosons 395
13.7 Higgs Boson Mass 399
13.8 Upper Bound . 399
13.8.1 Unitarity . 399
13.8.2 Finiteness of Couplings . 400
13.9 Standard Model, Higgs Boson Searches, Production at Decays
401
13.9.1 LEP-2 401
13.9.2 LHC and Tevatron . 402
13.10 Two Higgs Doublet Model (2HDM) . 406
13.11 GIM Mechanism . 411
13.12 Cabibbo-Kobayashi-Maskawa Matrix 414
13.13 Axial Anomaly 416
13.14 Problems . 421
13.15 References . 423
14. Deep Inelastic Scattering 425
14.1 Introduction 425
14.2 Deep-Inelastic Lepton-Nucleon Scattering . 427
14.3 Parton Model . 431
14.4 Deep Inelastic Neutrino-Nucleon Scattering 436
14.5 Sum Rules . 439
14.6 Deep-Inelastic Scattering Involving Neutral Weak Currents 446
14.7 Problems . 447
14.8 References . 450
15. Weak Decays of Heavy Flavors 451
15.1 Leptonic Decays of _ Lepton 451
15.2 Semi-Hadronic Decays of _ Lepton . 453
15.2.1 Special Cases . 454
15.3 Weak Decays of Heavy Flavors . 457
15.3.1 Leptonic Decays of D and B Mesons . 458
15.3.2 Semileptonic Decays of D and B Mesons . 459
15.3.3 (Exclusive) Semileptonic Decays of D and B Mesons 464
15.3.4 Weak Hadronic Decays of B Mesons 471
15.3.5 Inclusive Hadronic B Decays 476
15.3.6 Radiative Decays of Bq Mesons 478
15.4 Inclusive Hadronic Decays of D-Mesons 479
15.4.1 Scattering and Annihilation Diagrams . 480
15.5 Problems . 484
15.6 References . 487
16. Particle Mixing and CP-Violation 489
16.1 Introduction 489
16.2 CPT and CP Invariance . 492
16.3 CP-Violation in the Standard Model 494
16.4 Particle Mixing 497
16.5 K0 ?? _K0 Complex and CP-Violation in K-Decay . 504
16.6 B0 ?? _B0 Complex 511
16.7 CP-Violation in B-Decays 515
16.8 CP-Violation in Hadronic Weak Decays of Baryons 518
16.9 Problems . 522
16.10 References . 523
17. Grand Uni_cation, Supersymmetry and Strings 525
17.1 Grand Uni_cation 525
17.1.1 q2 Evolution of Gauge Coupling Constants and the
Grand Uni_cation Mass Scale . 529
17.1.2 General Consequences of GUTS 531
17.2 Poincar_e Group and Supersymmetry 534
17.2.1 Introduction . 534
17.2.2 Poincar_e group . 537
17.2.3 Two-Component Weyl Spinors . 539
17.2.4 Spinor Algebra, Supersymmetry 540
17.2.5 Supersymmetric Multiplets . 542
17.3 Supersymmetry and Strings . 544
17.3.1 Introduction . 544
17.3.2 Supersymmetry . 545
17.4 String Theory and Duality 548
17.4.1 M-theory . 550
17.5 Some Important Results . 552
17.6 Conclusions 552
17.7 Problems . 552
17.8 References . 554
18. Cosmology and Astroparticle Physics 557
18.1 Cosmological Principle and Expansion of the Universe 557
18.2 The Standard Model of Cosmology . 559
G
18.3 Cosmological Parameters and the Standard Model Solutions 562
18.4 Accelerating Universe and Dark Energy 566
18.4.1 Evidence from Supernovae . 567
18.4.2 Evidence from CMB Data . 568
18.4.3 Quintessence . 571
18.4.4 Modi_ed Gravity 573
18.5 Hot Big Bang: Thermal History of the Universe 574
18.5.1 Thermal Equilibrium 574
18.5.2 The Radiation Era . 576
18.6 Freeze Out 581
18.7 Limit on Neutrino Mass . 584
18.8 Primordial Nucleosynthesis . 585
18.9 Ination 588
18.9.1 Horizon Problem . 588
18.9.2 Flatness Problem 590
18.9.3 Realization of Ination . 591
18.9.4 Slow-roll Ination 593
18.10 Baryogenesis . 595
18.10.1 Sakharov's Conditions 597
18.10.2 Various Scenarios for Baryogenesis . 598
18.10.3 Leptogenesis . 601
18.11 Problems . 606
18.12 References . 607
Appendix A Quantum Field Theory 609
A.1 Spin 0 Field 609
A.2 Spin 1/2 Particle . 611
A.2.1 Pauli Representation of Matrices 612
A.2.2 Weyl Representation of Matrices . 613
A.3 Trace of Matrices 616
A.4 Spin 1 Field 618
A.5 Massive Spin 1 Particle . 619
A.6 Feynman Rules for S-Matrix in Momentum Space . 620
A.7 Application of Feynman Rules 621
A.7.1 e+e??!Hadrons 624
A.7.2 ElectronScatteringanStructurelessSpin1=2Target625
A.8 Discrete Symmetries . 628
A.8.1 Charge Conjugation . 628
A.8.2 Space Reection . 631
Electron Scattering and Structureless Spin 1=2 Target 625
A.8.3 Time Reversal 632
A.9 Problems . 633
AppendixB Renormalization Group and Running Coupling Constant 639
B.1 Feynman Rules for Quantum Chromodynamics 639
B.2 Renormalization Group, Coupling Constant and Asymptotic
Freedom . 640
B.3 Running Coupling Constant in Quantum Electrodynamics
(QED) . 645
B.4 Running Coupling Constant for SU(2) Gauge Group . 646
B.5 Renormalization Group and High Q2 Behavior of Green's
Function 647
B.5.1 Gluon Propagator 649
B.5.2 Fermion Propagator . 650
B.6 References for Appendices 652
Index 653