Fracture Mechanics of Piezoelectric and Ferroelectric Solids 压电与铁电体的断裂力学 英文版
作者:方岱宁,刘金喜 著
出版时间:2012年版
内容简介
《压电与铁电体的断裂力学(英文版)》是关于压电/铁电吲体断裂力学的专著,从理论分析、数值计算和实验观察三个方面比较全面和系统地阐述了压电/铁电固体的断裂问题,强调静态、动态和界面断裂问题的力学提法以及力电耦合效应所导致的电致断裂的物理本质。《压电与铁电体的断裂力学》的上要特色是:详细描述了压电/铁电材料的基本方程以及与断裂问题相关的一般解.以图的形式提供了大量的数值计算结果和实验结果,用简洁的语言解释了复杂的力电耦合断裂问题。《压电与铁电体的断裂力学》的这些特色使固体力学、材料科学、应用物理和机械工程领域的渎者能够很容易抓住问题的物理本质和把握压电/铁电固体断裂力学的研究现状。
目录
chapter 1 introduction
1.1 background of the research on fracture mechanics ofpiezoelectric/ferroelectric materials
1.2 development course and trend
1.3 framework of the book and content arrangements
referenceschapter 2 physical and material properties of dielectrics
2.1 basic concepts of piezoelectric/ferroelectric materials
2.2 crystal structure of dielectrics
2.3 properties of electric polarization and piezoelectricity
2.3.1 microscopic mechanism of polarization
2.3.2 physical description of electric polarization
2.3.3 dielectric constant tensor of crystal and its symmetry
2.4 domain switch of ferroelectrics
2.4.1 electric domain and domain structure
2.4.2 switching of electric domain and principles for domainswitch
referenceschapter 3 fracture of piezoelectric/ferroelectric materialsexperiments and results
3.1 experimental approaches and techniques under anelectromechanical coupling field
3.1.1 high-voltage power supply
3.1.2 high voltage insulation
3.1.3 moire interferometry
3.1.4 digital speckle correlation method
3.1.5 method of polarized microscope
3.1.6 experimental facilities
3.2 anisotropy of fracture toughness
3.3 electric field effect on fracture toughness
3.4 fracture behavior of ferroelectric nano-composites
3.5 measurement of strain field near electrode in double-layerstructure of piezoelectric ceramics
3.6 observation of crack types near electrode tip
3.7 experimental results and analysis related to ferroelectricsingle crystal out-of-plane polarized
3.7.1 restorable domain switch at crack tip driven by low electricfield
3.7.2 cyclic domain switch driven by cyclic electric field
3.7.3 electric crack propagation and evolution of crack tipelectric domain
3.8 experimental results and analysis concerning in-plane polarizedferroelectric single crytal
3.8.1 response of specimen under a positive electric field
3.8.2 crack tip domain switch under low negative electricfield
3.8.3 domain switching zone near crack tip under negativefield.
3.8.4 evolution of electric domain near crack tip under altematingelectric field
referenceschapter 4 basic equations of piezoelectric materials
4.1 basic equations
4.1.1 piezoelectric equations
4.1.2 gradient equations and balance equations
4.2 constraint relations between various electroelasticconstants
4.3 electroelastic constants of piezoelectric materials
4.3.1 coordinate transformation between vector and tensor of thesecond order
4.3.2 coordinate transformation of electroelastic constants
4.3.3 electroelastic constant matrixes of piezoelectric crystalsvested in 20 kinds of point groups
4.4 goveming differential equations and boundary conditions ofelectromechanical coupling problems
4.4.1 governing differential equations of electromechanicalcoupling problems
4.4.2 boundary conditions of electromechanical coupling
referenceschapter 5 general solutions to electromechanical couplingproblems of piezoelectric materials
5.1 extended stroh formalism for piezoelectricity
5.1.1 extended stroh formalism
5.1.2 mathematical properties and important relations of strohformalism
5.2 lekhniskii formalism for piezoelectricity
5.3 general solutions to two-dimensional problems of transverselyisotropic piezoelectric materials
5.3.1 the general solutions to the anti-plane problems oftransversely isotropic piezoelectric materials
5.3.2 the general solutions to the in-plane problems oftransverselyi sotropic piezoelectric materials--stroh method
5.3.3 the general solutions to the in-plane problems oftransverselyi sotropic piezoelectric materials--lekhniskiimethod
5.4 general solutions to three-dimensional problems oftransverselyi sotropic piezoelectric materials
referenceschapter 6 fracture mechanics of homogeneous piezoelectricmaterials
6.1 anti-plane fracture problem
6.2 in-plane fracture problem
6.3 three dimensional fracture problem
6.3.1 description of problem
6.3.2 derivation ofelectroelastic fields
6.4 electromechanical coupling problem for a dielectric elliptichole
6.4.1 anti-plane problem of transversely isotropic piezoelctricmaterial containing dielectric ellipic holes
6.4.2 generalized plane problems of piezoelectric materialscontaining a dielectric elliptic hole
6.5 influence on crack tip field imposed by electric boundaryconditions along the crack surface
referenceschapter 7 interface fracture mechanics of piezoelectricmaterials
7.1 interracial cracks in piezoelectric materials under uniformelectromechanical loads
7.1.1 tip field of interracial crack
7.1.2 full field solutions for an impermeable interfacialcrack
7.2 effect of material properties on interfacial crack tipfield
7.3 green's functions for piezoelectric materials withaninterfacial crack
7.3.1 brief review of green's functions forpiezoelectricmaterials
7.3.2 green's functions for anti-plane interracial cracks
referenceschapter 8 dynamic fracture mechanics of piezoelectricmaterials
8.1 scattering of elastic waves in a cracked piezoelectrics
8.1.1 basic concepts concerning propagation of elastic wavein apiezoelectrics
8.1.2 dominant research work on elastic wave scattering causedbycracks in piezoelectrics
8.1.3 scattering of love wave caused by interficial cracksinlayered elastic half-space of piezoelectrics
8.2 moving cracks in piezoelectric medium
8.2.1 anti-plane problems of moving interficial cracks
8.2.2 the plane problem of moving cracks
8.3 transient response of a cracked piezoelectrics toelectromechanicalimpact load
8.3.1 anti-plane problems of cracked piezoelectrics underimpactelectromechanical loads
8.3.2 transient response of crack mode-lli instrip-shapedpiezoelectric medium
8.3.3 in-plane problems of cracked piezoelectrics under theactionof impact electromechanical loads
8.4 dynamic crack propagation in piezoelectric materials
8.4.1 dynamic propagation of conducting crack mode-iii
8.4.2 dynamic propagation of dielectric crack mode-m
referenceschapter 9 nonlinear fracture mechanics of ferroelectricmaterials
9.1 nonlinear fracture mechanical model
9.1.1 electrostriction model
9.1.2 dugdale model (strip saturation mode)
9.2 domain switching toughening model
9.2.1 decoupled isotropy model
9.2.2 anisotropy model for electromechanical coupling
9.3 nonlinear crack opening displacement model
9.3.1 definition of crack opening displacement
9.3.2 crack opening displacement 8o caused by piezoelectriceffect
9.3.3 effect a8 of domain switching on crack openingdisplacement
9.4 interaction between crack tip domain switching of batio3 singlecrystal and crack growth under electromechanical load
9.4.1 experiment principle and technology
9.4.2 experimental phenomena
9.4.3 analysis of domain switching zone
9.4.4 ferroelastic domain switching toughening
referenceschapter 10 fracture criteria
10.1 stress intensity factor criterion
10.2 energy release rate criterion
10.2.1 total energy release rate criterion
10.2.2 mechanical strain energy release rate criterion
10.3 energy density factor criterion
10.4 further discussion on stress intensity factor criterion
10.5 cod criterion
referenceschapter 11 electro-elastic concentrations induced by electrodesinpiezoelectric materials
11.1 electroelastic field near surface electrodes
11.1.1 electroelastic field near stripe-shapedsurfaceelectrodes
11.1.2 electroelastic field near circular surface electrodes
11.2 electroelastic field near interface electrode
11.2.1 general solution to the interface electrode of anisotropicpiezoelectric bi-materials
11.2.2 electroelastic field near the interface electrode intransversely isotropic piezoelectric bi-materials
11.3 electroelastic field in piezoelectric ceramic-electrodelayered structures
11.3.1 laminated structure model, experimental set-up andfiniteelement calculation model
11.3.2 numerical calculation and experimentallymeasuredresults
referenceschapter 12 electric-induced fatigue fracture
12.1 experimental observation and results
12.1.1 electrically induced fatigue experiment by cao andevans(1994)
12.1.2 electrically induced fatigue experiment of samplescontainingpenetrating cracks
12.2 phenomenological model
12.2.1 model i
12.2.2 model ii
12.3 domain switching model
12.3.1 electrically induced fatigue investigated by means ofcracktip intensity factor
12.3.2 investigation of electrically induced fatigue by meansofcrack opening displacement (cod)
referenceschapter 13 numerical method foranalyzing fracture ofpiezoelectricand ferroelectric materials
13.1 generalized variation principle
13.1.1 generalized variation principle of linearelasticmechanics
13.1.2 variation principle of electromechanical couplingproblem
13.2 finite element method for piezoelectric materialfracture
13.2.1 basic format of finite element for piezoelectricfracture
13.2.2 calculation example: the electromechanical field around thecircular hole in an infinite piezoelectric matrix:
13.2.3 calculation example: model of piezoelectric material withtwo-sided notches
13.3 meshless method for piezoelectric material fracture
13.3.1 basic format of electromechanical coupling meshlessmethod
13.3.2 some problems about electromechanical coupling meshlessmethod
13.3.3 numerical example
13.4 nonlinear finite element analysis of ferroelectric materialfracture
13.4.1 solution of field quantity with given electric domaindistribution
13.4.2 new electric domain distribution and finite elementiterative process determined by field quantity
13.4.3 calculation example: ferroelectric crystal containinginsulating circular hole plus vertical electric field
13.4.4 calculation example: ferroelectric crystal containinginsulating crack plus electric field (e = 0.72ec) perpendicular tocrack surface
references
appendix the material constants of piezoelectric ceramics