机械动力学
出版时间:2013年版
内容简介
《机械动力学》主要与编者多年的研究生机械动力学教学内容相配合,重点介绍了单自由度、双自由度、多自由度及连续体振动系统的建模与分析过程,辅之以振动数值方法的基本原理推导,最后对非线性振动、转子动力学和有限元思想进行了简单阐述。
《机械动力学》主要供高等院校的理工科研究生及相关科技工作人员使用。
目录
第1章 振动理论基础
1.1 机械振动的运动学概念及分类
1.2 简谐振动
第2章 单自由度系统振动
2.1 单自由度振动系统元件
2.2 单自由度系统无阻尼振动
2.3 单自由度系统有阻尼振动
2.4 单自由度系统受迫振动
2.5 单自由度系统振动理论的应用
第3章 多自由度系统振动
3.1 双自由度系统振动
3.2 多自由度系统振动
3.3 多自由度系统的固有特性
3.4 多自由度系统的模态分析
3.5 多自由度系统的动力响应
3.6 多自由度系统振动理论的应用
第4章 连续体振动
4.1 弦的横向振动
4.2 杆的纵向振动
4.3 轴的扭转振动
4.4 梁的横向振动
4.5 薄膜的横向振动
4.6 薄板的横向振动
第5章 振动分析与仿真的数值方法
5.1 单自由度系统固有频率的计算方法
5.2 多自由度系统的数值方法
5.3 振动的数值仿真
第6章 非线性振动基础
6.1 非线性系统的稳定性及举例
6.2 相平面
6.3 平衡的稳定性
6.4 图解法
6.4 解析法
第7章 其他机械系统动力学
7.1 转子动力学简介
7.2 平面连杆机构的弹性振动
附录
附录一 三角函数和双曲函数的常用公式
附录二 简单载荷下梁的静态变形
附录三 二分法求根
附录四 齐次线性常微分方程解的结构与形式
参考文献