机构学与机器人学的几何基础与旋量代数
作者: 戴建生
出版年: 2014
《机构学与机器人学的几何基础与旋量代数》起始于直线几何与线性代数,自然过渡到旋量代数与有限位移旋量,紧密联系李群、李代数、对偶数、Hamilton四元数、Clifford对偶四元数等现代数学基础,首次全面、深入地阐述旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数以及有限位移旋量与李群之间的关联理论,展现出旋量理论与经典数学以及现代数学的内在关联,总结提炼出许多论证严密、意义明确的引理、定理与推论,由此阐述第一篇“几何基础、旋量代数与李群、李代数”,给出机构学与机器人学的几何基础与数学理论。
在第二篇“旋量系理论及机构约束与自由运动”中,运用集合论与线性代数等经典数学推导并揭示旋量系、旋量多重集及其阶数与基数的本质内涵,提出并阐述旋量系关联关系理论、零空间构造理论、旋量系分解理论及旋量系对偶理论。通过演绎旋量系这四大基本理论在过约束机构、抓持与并联机构约束分析、机构活动度等机构学与机器人学基础理论问题中的推理与应用,提出并系统地建立了完整的旋量系理论,进而奠定机构与机器人约束与自由运动的理论基础。
在第三篇“旋量代数与几何基础的机构学与机器人学应用”中,运用旋量代数与旋量系理论研究Sarrus机构、Hoberman机构、Schatz机构、Watt机构等经典机构以及变胞并联机构、闭环支链并联机构等新型机构及其在机器人中的应用,提出并联机构四大基本旋量系、活动度扩展准则、抓持扩展矩阵、弹性系数融合矩阵、多指灵巧手“变胞活动手掌”等能够解决机构学与机器人学中实际问题的一系列新概念与新理论,完整地演绎旋量代数与旋量系理论在机构学与机器人学中的应用。
本书全面系统地阐述旋量代数及其几何基础,演绎其推理运算。该书层次清晰,推理严谨,循序渐进,引人入胜,含有许多准确、严密的定义、引理、定理、推论、注释、脚注、证明以及详尽的公式推导过程,适合作为旋量理论、机构学、机器人学、制造系统与自动化、精密仪器、计算机科学及图形学等相关专业的研究生教材或高年级本科生教材,也可作为相关科研人员的参考用书。