分离工程(英文版)
出版时间:2012年
内容简介
《分离工程(英文版)》是针对分离工程双语教学编写而成的英文版教材,内容编排与中文分离工程课程体系一致,便于学生学习使用。本书共七章,内容包括多级平衡分离基础、精馏、多组分吸收、多级分离的严格计算、分离过程设备的效率和过程优化、其他新型分离方法等。每章后附有词汇、注释、习题与参考文献。本书编写时参考了大量英文原版教材与英文文献,力求语言上达到原汁原味。《分离工程(英文版)》可作为高等院校化学工程与工艺、制药工程、生物工程、环境工程、食品与轻化工等专业的分离工程双语教材,也可作为相关科研人员和技术人员的参考书。
目录
Chapter 1 Separation Processes
1.1 Characteristics of separation process and separationfactor
1.1.1 Characteristics of separation process
1.1.2 Separation factor
1.2 Classifications of separation process
1.3 Selection of separation processes
1.4 Industrial chemical processes
Words
Notes
Problems
References
Chapter 2 Foundation of Multicomponent, Multistage
Separations
2.1 Degree of freedom and design variables
2.1.1 General description
2.1.2 Design and control degrees of freedom
2.1.3 Phase rule and the degree of freedom analysis ofprocesses
2.2 Calculation of phase equilibrium
2.2.1 Phase equilibrium
2.2.2 Phase equilibrium data
2.2.3 Calculations of vapor–liquid equilibrium
2.3 Multicomponent bubble- and dew-point calculations
2.4 Single stage equilibrium calculations
2.4.1 Determination of phase conditions for a mixture and types offlash
distillation calculations
2.4.2 Isothermal flash
2.4.3 Adiabatic flash
2.5 Batch distillation
2.5.1 Introduction
2.5.2 Unconventional column configurations
2.5.3 Batch distillation optimization
2.6 Steam distillation
2.7 Continuous distillation
Words
Notes
Problems
References
Chapter 3 Multicomponent, Multistage Separations
3.1 Multicomponent distillation
3.1.1 Key components
3.1.2 Complex of multicomponent distillation
3.2 Fenske-Underwood-Gilliland shortcut method
3.2.1 Material balance method of sharp separation
3.2.2 Fenske equation for minimum equilibrium stages
3.2.3 Underwood formula for minimum reflux ratio
3.2.4 Gilliland correlation for actual reflux ratio andtheoretical stages
3.2.5 Feed-stage location
3.3 Azeotropic distillation
3.3.1 Azeotropism
3.3.2 Characteristics of azeotrope
3.3.3 Azeotropic distillation processes
3.3.4 Azeotropic distillation using an entrainer
3.4 Extractive distillation
3.4.1 Introduction
3.4.2 Principles of extractive distillation
3.4.3 Analysis of extractive distillation process
3.5 Salt distillation
Words
Notes
Problems
References
Chapter 4 Gas Absorption and Stripping
4.1 Introduction
4.2 Gas-liquid equilibrium
4.2.1 Equilibrium of physical absorption
4.2.2 Equilibrium of chemical absorption
4.3 Absorption and stripping process
4.3.1 Introduction of absorption and stripping process
4.3.2 Analysis of multicomponent absorption and strippingprocess
4.4 Shortcut calculation of multicomponent absorption andstripping process
4.4.1 Basic conception of absorption process calculation
4.4.2 Absorption factor method
4.4.3 Stripping factor method
Words
Notes
Problems
References
Chapter 5 Rigorous Methods for Multicomponent, Multistage
Separations
5.1 Theoretical model for an equilibrium stage
5.1.1 Physical model of complex distillation column
5.1.2 Theoretical model of equilibrium stage
5.2 General strategy of mathematical solution
5.3 Equation-tearing procedures
5.3.1 Tridiagonal-matrix algorithm
5.3.2 Bubble-point (BP) method
5.3.3 Sum-rates (SR) method
5.3.4 Simultaneous-correction method
5.4 Stage-by-stage method
5.4.1 Starting point of calculation
5.4.2 Calculation at constant molar overflow
5.4.3 Determination of feed stage and the criteria for the end ofcalculation
5.4.4 Calculation at varying molar overflow
Words
Notes
Problems
References
Chapter 6 Efficiency and Energy Saving in Distillation
Process
6.1 Efficiency
6.1.1 Types of plate efficiency
6.1.2 Factors impacting efficiency
6.1.3 Efficiency calculation methods
6.1.4 Overall efficiency evaluation of commercial distillationcolumns
6.2 Minimum work of separation process
6.2.1 General description
6.2.2 Minimum work of separation
6.2.3 Nonisothermal separation and available energy
6.2.4 Net work consumption and thermodynamic efficiency
6.3 Energy saving in distillation process
6.3.1 Thermodynamic analysis of separation process
6.3.2 Distillation with intermediate condenser and reboiler
6.3.3 Multi-effect distillation
6.3.4 Heat pump
6.4 Distillation sequencing
6.4.1 Distillation sequencing using simple columns
6.4.2 Practical constraints restricting options
6.4.3 Choice of sequence for simple nonintegrated distillationcolumns
6.4.4 Distillation sequencing using columns with more than twoproducts
6.5 Synthesis of separation processes by case-basedreasoning
6.5.1 Selection of single separations
6.5.2 Synthesis of azeotropic separations
6.5.3 Synthesis of separation sequences
6.5.4 Combined operations
6.5.5 Examples on azeotropic separation
6.6 Design and optimization of thermally coupled distillationschemes
6.7 Energy efficiency of an indirect, thermally coupleddistillation sequence
Words
Notes
Problems
References
Chapter 7 Other Separation Methods
7.1 Adsorption
7.1.1 Adsorbents
7.1.2 Fundamentals of adsorption equilibria
7.1.3 Theories of adsorption equilibria
7.1.4 Processes and cycles
7.1.5 Application in carbon dioxide separation
7.2 Ion exchange
7.2.1 Structure of ion exchange resins
7.2.2 Principles of ion exchange processes
7.2.3 Type of ion exchange resins
7.2.4 Application of ion exchange resins
7.2.5 Regeneration of ion exchange resins
7.3 Liquid-liquid extraction
7.3.1 Solvent selection
7.3.2 Extractor design
7.3.3 Liquid-liquid extraction equipment
7.3.4 Supercritical fluid extraction
7.4 Reactive distillation
7.4.1 Introduction
7.4.2 Basic of reactive distillation
7.4.3 Available commercial catalytic packings and homogeneousinternals
7.4.4 Barriers to commercial implementation
7.4.5 Computational methods
7.4.6 Application
7.5 Membrane separation
7.5.1 Introduction
7.5.2 Membranes for gas separation
7.5.3 Membranes for liquid separation
Words
Notes
Problems
References