欢迎访问学兔兔,学习、交流 分享 !

返回首页 |

Lie代数 邓少强,陈智奇,王秀玲 著 2019年版

收藏
  • 大小:21.72 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
Lie代数
作者:邓少强,陈智奇,王秀玲 著
出版时间:2019年版
丛编项: 普通高等教育“十三五”规划教材
内容简介
  《Lie代数》是南开大学代数类课程整体规划系列教材的第三本。《Lie代数》以高等代数和抽象代数为基础,主要讲述特征为零的代数闭域上的半单Lie代数的分类理论,同时讲述了实半单Lie代数的部分分类结果。《Lie代数》配备了比较多的习题,其中部分习题是由文献中的研究论文转化而来的,希望初学者独立思考,打好坚实的Lie代数基础。
目录
目录
前言
第0章 预备知识 1
0.1 Jordan-Chevalley分解 1
0.2 线性空间的张量积 5
0.3 实线性空间的复化 9
第1章 Lie代数的基本概念 12
1.1 Lie代数的定义 12
1.2 Lie代数的同态 18
1.3 幂零Lie代数 21
1.4 可解Lie代数与Lie定理 25
1.5 半单Lie代数 29
1.6 Lie代数的表示 34
第2章 复半单Lie代数的Dynkin图 39
2.1 Casimir元 39
2.2 Weyl定理及其应用 42
2.3 sl(2,C)的表示 46
2.4 复半单Lie代数的根空间分解 49
2.5 复半单Lie代数的根系 55
2.6 Dynkin图 61
2.7 Dynkin图的实现 66
2.8 Weyl群 71
第3章 复半单Lie代数的分类 75
3.1 Cartan子代数 75
3.2 共轭定理 79
3.3 复半单Lie代数的分类定理 83
3.4 Serre定理 90
第4章 实半单Lie代数简介 101
4.1 紧Lie代数 101
4.2 Cartan分解 104
4.3 Cartan子代数 109
4.4 Satake图 111
参考文献 118
索引 119
下载地址