欢迎访问学兔兔,学习、交流 分享 !

返回首页 |

数学欣赏 论数与形 H.拉德马赫,O.特普利茨著 左平译 2017年版

收藏
  • 大小:70.83 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
数学欣赏 论数与形
作者:H.拉德马赫,O.特普利茨著 左平译
出版时间: 2017年版
内容简介
  《数学欣赏(论数与形)/数学概览15》搜集了有关数与形的各种问题的数学珍品,它们都是一些大数学家偶然离开深刻的理论领域,从含有数学的一些简单现象出发,提出问题、分析问题、巧妙而精准地解决问题,从而创造出来的短篇数学杰作。阅读和理解《数学欣赏(论数与形)/数学概览15》中的任何一篇,都不需要许多数学理论和知识,只需要在推理时比通常的阅读更积极主动些。如果做到这样,读者将得到数学思维的锻炼,欣赏到数学的无比美妙。《数学欣赏(论数与形)/数学概览15》适合大学生、高中生、中学数学老师,特别是爱好数学并愿做数学思考者阅读。
目录
1. 素数序列
2. 曲线通行网
3. 一些极大问题
4. 不可通约线段或无理数
5. 垂足三角形的一个极小性质
6. 前篇极小性的第二个证法
7. 集合论
8. 一些组合问题
9. 华林问题
10. 闭自交曲线
11. 数的素因子分解是唯一的吗?
12. 四色问题及五色定理的证明
13. 正多面体
14. 毕达哥拉斯数和费马大定理
15. 算术-几何平均值定理
16. 有限点集的覆盖圆
17. 用有理数逼近无理数
18. 利用连杆产生直线运动
19. 完全数
20. 欧拉关于素数无限性的证明
21. 极大问题的基本原理
22. 一定周长下面积最大的图形
23. 循环小数
24. 圆的一个特性
25. 等宽度曲线
26. 初等几何作图中圆规的必要性
27. 数30的一个性质
28. 邦塞不等式的一个改进
附录
《数学欣赏》:历久弥新的通俗数学经典
下载地址