曲线模(英文影印版)
出版时间:2011年版
内容简介
《曲线模》是Springer数学研究生教材系列之一,全面而深入地讲述了曲线模这个科目,即代数曲线及其在族中是如何变化的。《曲线模》对曲线模的讲述,符合学习理解的规律,也是对该领域的广泛而简洁的概述,使得具有现代代数几何背景的读者很容易学习理解。书中包括了许多技巧,如Hilbert空间,变形原理,稳定约化,相交理论,几何不变理论等,曲线模型的讲述涉及从例子到应用。文中继而讨论了曲线模空间的构成,通过有限线性系列说明了Brill-Noether和Gieseker-Petri定理证明的典型应用,也讲述了一些有关不可约性,完全子变量,丰富除子和Kodaira维数的重要几何结果。书中也包括了该领域相当重要的重要定理几何开放性问题,但只是做了简明引入,并没有展开讨论。书中众多的练习和图例,使得内容更加丰富,易于理解。
目录
preface
1 parameter spaces: constructions and examples
a parameters and moduli
b construction of the hfibert scheme
c tangent space to the hilbert scheme
d extrinsic pathologies
mumford's example
other examples
e dimension of the hilbert scheme
f severi varieties
g hurwitz schemes
basic facts about moduli spaces of curves
a why do fine moduli spaces of curves not exist?
b moduli spaces we'll be concerned with
c constructions of mg
the teichmiiller approach
the hodge theory approach
the geometric invariant theory (g.i,t.) approach
d geometric and topological properties
basic properties
local properties
complete subvarieties of mg
cohomology of mg: hater's theorems
cohomology of the universal curve
cohomology of hfibert schemes
structure of the tautological ring
witten's conjectures and kontsevich's theorem
e moduli spaces of stable maps
techniques
a basic facts about nodal and stable curves
dualizing sheaves
automorphisms
b deformation theory
overview
deformations of smooth curves
variations on the basic deformation theory plan
universal deformations of stable curves
deformations of maps
c stable reduction
results
examples
d interlude: calculations on the moduli stack
divisor classes on the moduli stack
existence of tautological families
e grothendieck-riemann-roch and porteous
grothendieck-riemann-roch
chern classes of the hodge bundle
chern class of the tangent bundle
porteous' formula
the hyperelliptic locus in m3
relations amongst standard cohomology classes
divisor classes on hilbert schemes
f test curves: the hyperelliptic locus in m3 begun
g admissible covers
h the hyperelliptic locus in m3 completed
4 construction of m3
a background on geometric invariant theory
the g.i.t. strategy
finite generation of and separation by invariants
the numerical criterion
stability of plane curves
b stability of hilbert points of smooth curves
the numerical criterion for hilbert points
gieseker's criterion
stability of smooth curves
c construction of mg via the potential stability theorem
the plan of the construction and a few corollaries
the potential stability theorem
limit linear series and brill-noether theory
a introductory remarks on degenerations
b limits of line bundles
c limits of linear series: motivation and examples
d limit linear series: definitions and applications
limit linear series
smoothing limit linear series
limits of canonical series and weierstrass points
limit linear series on flag curves
inequalities on vanishing sequences
the case p = 0
proof of the gieseker-petri theorem
geometry of moduli spaces: selected results
a irreducibility of the moduli space of curves
b diaz' theorem
the idea: stratifying the moduli space
the proof
c moduli of hyperelliptic curves
fiddling around
the calculation for an (almost) arbitrary family
the picard group of the hyperelliptic locus
d ample divisors on mg
an inequality for generically hilbert stable families
proof of the theorem
an inequality for families of pointed curves
ample divisors on mg
e irreducibility of the severi varieties
initial reductions
analyzing a degeneration
an example
completing the argument
f kodaira dimension of mg
writing down general curves
basic ideas
pulling back the divisors dr
divisors on mg that miss j(m2,1 \ w)
divisors on mg that miss i(m0,g)
further divisor class calculations
curves defined over q
bibliography
index