欢迎访问学兔兔,学习、交流 分享 !

返回首页 |

非线性问题的重心插值配点法

收藏
  • 大小:116.56 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
非线性问题的重心插值配点法
出版时间:2015年版
内容简介
  《非线性问题的重心插值配点法》论述了重心插值配点法求解非线性微分方程的计算格式和计算程序;详细讨论了重心插值配点法求解非线性常微分方程初值问题和边值问题、二维非线性椭圆偏微分方程边值问题、一维非线性扩散方程和动力学方程初边值问题的计算方法;给出了直接线性化和Newton线性化迭代重心插值配点法求解非线性微分方程的计算算法;建立了求解非线性微分方程(初)边值问题的重心插值Newton-Raphson迭代法计算格式;通过大量数值算例,说明了重心插值配点法求解非线性微分方程的有效性和计算精度。《非线性问题的重心插值配点法》可供从事数值分析领域研究的工程技术人员和高等院校计算数学、计算力学和其他工科专业本科生、研究生参考。
目录
第1章 非线性问题的基本方法
1.1 非线性问题的数学模型
1.2 非线性问题的数值分析方法
1.2.1 非线性问题的简单分类
1.2.2 非线性问题的经典数值分析方法
1.3 非线性问题的线性化迭代法
1.3.1 直接线性化迭代法
1.3.2 Newton线性化迭代法
1.4 重心插值及其微分矩阵
1.4.1 一维重心插值及其微分矩阵
1.4.2 二维插值公式及其偏微分矩阵
1.4.3 插值节点类型
1.4.4 重心插值配点法的微分矩阵表达
1.5 相关符号约定和MATLAB程序流程
1.5.1 符号约定
1.5.2 MATLAB程序流程
1.6 本书基本内容
参考文献
第2章 非线性初值问题
2.1 一阶非线性初值问题
2.1.1 直接线性化迭代格式
2.1.2 Newton线性化迭代格式
2.1.3 数值算例及分析
2.2 二阶非线性初值问题
2.2.1 二阶非线性方程的Newton线性化迭代格式
2.2.2 数值算例及分析
2.2.3 二阶非线性奇异初值问题
2.3 高阶非线性初值问题
2.3.1 三阶非线性初值问题
2.3.2 四阶非线性初值问题
2.4 非线性常微分方程组初值问题
2.4.1 非线性常微分方程组初值问题计算格式
2.4.2 数值算例及分析
2.5 小结
参考文献
第3章 非线性振荡问题
3.1 单自由度非线性机械振动问题
3.1.1 大振幅单摆问题
3.1.2 旋转抛物线上粒子运动问题
3.1.3 附着在滚动轮上单摆振动问题
3.2 单自由度非线性振荡问题
3.2.1 立方Duffing振荡
3.2.2 立方-五次方Duffing振荡
3.2.3 Van der Pol振荡系统
3.2.4 Duffing-Van der Pol振荡系统
3.2.5 分数次方非线性振荡系统
3.2.6 非线性电阻RC电路
3.3 多自由度非线性系统
3.3.1 非线性弹簧一质量系统
3.3.2 非线性电路
3.4 小结
参考文献
第4章 非线性一维边值问题
4.1 二阶非线性两点边值问题
4.1.1 Dirichlet边值问题
4.1.2 化学反应温度模拟
4.1.3 梯形散热片温度模拟
4.1.4 二阶非线性奇异边值问题
4.2 重心插值Newton-Raphson迭代法
4.2.1 求解非线性方程组的Newton-Raphson迭代法
4.2.2 重心插值Newton-Raphson迭代法
4.2.3 常见非线性形式的Jacobi矩阵计算公式
4.2.4 数值算例与比较
4.3 高阶非线性边值问题
……
第5章 非线性二维椭圆边值问题
第6章 非线性扩散方程初边值问题
第7章 非线性动力学方程初边值问题
第8章 总结
附录 代表性数值算例的MATLAB计算程序
下载地址