欢迎访问学兔兔,学习、交流 分享 !

返回首页 |

多元数据分析(第7版 英文版)

收藏
  • 大小:223.75 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
多元数据分析(第7版 英文版)
出版时间:2011年版
内容简介
  《多元数据分析(英文版)(第7版)》是一本面向应用的经典多元数据分析教材,自1979年出版第1版至今,深受读者好评。《多元数据分析(英文版)(第7版)》循序渐进地介绍了各种多元统计分析方法,并通过丰富的实例演示了这些方法的应用。书中不仅涵盖多元数据分析的基本方法,而且还介绍了一些新方法,如结构方程建模和偏最小二乘法等。
目录
preface iii
about the authors v
 chapter 1 introduction: methods and model building
  what is multivariate analysis?
  multivariate analysis in statistical terms
  some basic concepts of multivariate analysis
  the variate
  measurement scales
  measurement error and multivariate measurement
  statistical significance versus statistical power
  types of statistical error and statistical power
  impacts on statistical power
  using power with multivariate techniques
  a classification of multivariate techniques
  dependence techniques
  interdependence techniques
  types of multivariate techniques
  principal components and common factor analysis
  multiple regression
  multiple discriminant analysis and logistic regression
  canonical correlation
  multivariate analysis of variance and covariance
  conjoint analysis
  cluster analysis
  perceptual mapping
  correspondence analysis
  structural equation modeling and confirmatory factoranalysis
  guidelines for multivariate analyses and interpretation
  establish practical significance as well as statistical
  significance
  recognize that sample size affects all results
  know your data
  strive for model parsimony
  look at your errors
  validate your results
  a structured approach to multivariate model building
  stage 1: define the research problem, objectives,
  and multivariate technique to be used
  stage 2: develop the analysis plan
  stage 3: evaluate the assumptions underlying the multivariatetechnique
  stage 4: estimate the multivariate model and assess overall modelfit
  stage 5: interpret the variate(s)
  stage 6: validate the multivariate model
  a decision flowchart
  databases
  primary database
  other databases
  organization of the remaining chapters
section i: understanding and preparing for multivariateanalysis
section ii: analysis using dependence techniques
section iii: interdependence techniques
section iv: structural equations modeling
  summary 28 . questions 30 . suggested readings
  references
section i understanding and preparing for multivariateanalysis
 chapter 2 cleaning and transforming data
  introduction
  graphical examination of the data
  univariate profiling: examining the shape of thedistribution
  bivariate profiling: examining the relationship betweenvariables
  bivariate profiling: examining group differences
  multivariate profiles
  missing data
  the impact of missing data
  a simple example of a missing data analysis
  a four-step process for identifying missing data and applyingremedies
  an illustration of missing data diagnosis with the four-stepprocess
  outliers
  detecting and handling outliers
  an illustrative example of analyzing outliers
  testing the assumptions of multivariate analysis
  assessing individual variables versus the variate
  four important statistical assumptions
  data transformations
  an illustration of testing the assumptions underlyingmultivariate analysis
  incorporating nonmetric data with dummy variables
  summary 88 . questions 89 . suggested readings
  references
 chapter 3 factor analysis
  what is factor analysis?
  a hypothetical example of factor analysis
  factor analysis decision process
  stage 1: objectives of factor analysis
  specifying the unit of analysis
  achieving data summarization versus data reduction
  variable selection
  using factor analysis with other multivariate techniques
  stage 2: designing a factor analysis
  correlations among variables or respondents
  variable selection and measurement issues
  sample size
  summary
  stage 3: assumptions in factor analysis
  conceptual issues
  statistical issues
  summary
  stage 4: deriving factors and assessing overall fit
  selecting the factor extraction method
  criteria for the number of factors to extract
  stage 5: interpreting the factors
  the three processes of factor interpretation
  rotation of factors
  judging the significance of factor loadings
  interpreting a factor matrix
  stage 6: validation of factor analysis
  use of a confirmatory perspective
  assessing factor structure stability
  detecting influential observations
  stage 7: additional uses of factor analysis results
  selecting surrogate variables for subsequent analysis
  creating summated scales
  computing factor scores
  selecting among the three methods
  an illustrative example
  stage 1: objectives of factor analysis
  stage 2: designing a factor analysis
  stage 3: assumptions in factor analysis
  component factor analysis: stages 4 through 7
  common factor analysis: stages 4 and 5
  a managerial overview of the results
  summary 148 . questions 150 . suggested readings
  references
section ii analysis using dependence techniques
 chapter 4 simple and multiple regression
  what is multiple regression analysis?
  an example of simple and multiple regression
  prediction using a single independent variable:
  simple regression
  prediction using several independent variables:
  multiple regression
  summary
  a decision process for multiple regression analysis
  stage 1: objectives of multiple regression
  research problems appropriate for multiple regression
  specifying a statistical relationship
  selection of dependent and independent variables
  stage 2: research design of a multiple regression analysis
  sample size
  creating additional variables
  stage 3: assumptions in multiple regression analysis
  assessing individual variables versus the variate
  methods of diagnosis
  linearity of the phenomenon
  constant variance of the error term
  independence of the error terms
  normality of the error term distribution
  summary
  stage 4: estimating the regression model and assessing overallmodel fit
  selecting an estimation technique
  testing the regression variate for meeting the regressionassumptions
  examining the statistical significance of our model
  identifying influential observations
  stage 5: interpreting the regression variate
  using the regression coefficients
  assessing multicollinearity
  stage 6: validation of the results
  additional or split samples
  calculating the press statistic
  comparing regression models
  forecasting with the model
  illustration of a regression analysis
  stage 1: objectives of multiple regression
  stage 2: research design of a multiple regression analysis
  stage 3: assumptions in multiple regression analysis
  stage 4: estimating the regression model and assessing overallmodel fit
  stage 5: interpreting the regression variate
  stage 6: validating the results
  evaluating alternative regression models
  a managerial overview of the results
  summary 231 . questions 234 . suggested readings
  references
 chapter 5 canonical correlation
  what is canonical correlation?
  hypothetical example of canonical correlation
  developing a variate of dependent variables
  estimating the first canonical function
  estimating a second canonical function
  relationships of canonical correlation analysis to othermultivariate techniques
  stage 1: objectives of canonical correlation analysis
  selection of variable sets
  evaluating research objectives
  stage 2: designing a canonical correlation analysis
  sample size
  variables and their conceptual linkage
  missing data and outliers
  stage 3: assumptions in canonical correlation
  linearity
  normality
  homoscedasticity and multicollinearity
  stage 4: deriving the canonical functions and assessing overallfit
  deriving canonical functions
  which canonical functions should be interpreted?
  stage 5: interpreting the canonical variate
  canonical weights
  canonical loadings
  canonical cross-loadings
  which interpretation approach to use
  stage 6: validation and diagnosis
  an illustrative example
  stage 1: objectives of canonical correlation analysis
  stages 2 and 3: designing a canonical correlation analysis andtesting the assumptions
? stage 4: deriving the canonical functions and assessing overallfit
  stage 5: interpreting the canonical variates
  stage 6: validation and diagnosis
  a managerial overview of the results
  summary 258 . questions 259 . references
 chapter 6 conjoint analysis
  what is conjoint analysis?
  hypothetical example of conjoint analysis
  specifying utility, factors, levels, and profiles
  gathering preferences from respondents
  estimating part-worths
  determining attribute importance
  assessing predictive accuracy
  the managerial uses of conjoint analysis
  comparing conjoint analysis with other multivariate methods
  compositional versus decompositional techniques
  specifying the conjoint variate
  separate models for each individual
  flexibility in types of relationships
  designing a conjoint analysis experiment
  stage 1: the objectives of conjoint analysis
  defining the total utility of the object
  specifying the determinant factors
  stage 2: the design of a conjoint analysis
  selecting a conjoint analysis methodology
  designing profiles: selecting and defining factors andlevels
  specifying the basic model form
  data collection
  stage 3: assumptions of conjoint analysis
  stage 4: estimating the conjoint model and assessing overallfit
  selecting an estimation technique
  estimated part-worths
  evaluating model goodness-of-fit
  stage 5: interpreting the results
  examining the estimated part-worths
  assessing the relative importance of attributes
  stage 6: validation of the conjoint results
  managerial applications of conjoint analysis
  segmentation
  profitability analysis
  conjoint simulators
  alternative conjoint methodologies
  adaptive/self-explicated conjoint: conjoint with
  a large number of factors
  choice-based conjoint: adding another touch of realism
  overview of the three conjoint methodologies
  an illustration of conjoint analysis
  stage 1: objectives of the conjoint analysis
  stage 2: design of the conjoint analysis
  stage 3: assumptions in conjoint analysis
  stage 4: estimating the conjoint model and assessing overallmodel fit
  stage 5: interpreting the results
  stage 6: validation of the results
  a managerial application: use of a choice simulator
  summary 327 . questions 330 . suggested readings
  references
 chapter 7 multiple discriminant analysis and logisticregression
  what are discriminant analysis and logistic regression?
  discriminant analysis
  logistic regression
  analogy with regression and manova
  hypothetical example of discriminant analysis
  a two-group discriminant analysis: purchasers versusnonpurchasers
  a geometric representation of the two-group discriminantfunction
  a three-group example of discriminant analysis: switchingintentions
  the decision process for discriminant analysis
  stage 1: objectives of discriminant analysis
  stage 2: research design for discriminant analysis
  selecting dependent and independent variables
  sample size
  division of the sample
  stage 3: assumptions of discriminant analysis
  impacts on estimation and classification
  impacts on interpretation
  stage 4: estimation of the discriminant model and assessingoverall fit
  selecting an estimation method
  statistical significance
  assessing overall model fit
  casewise diagnostics
  stage 5: interpretation of the results
  discriminant weights
  discriminant loadings
  partial f values
  interpretation of two or more functions
  which interpretive method to use?
  stage 6: validation of the results
  validation procedures
  profiling group differences
  a two-group illustrative example
  stage 1: objectives of discriminant analysis
  stage 2: research design for discriminant analysis
  stage 3: assumptions of discriminant analysis
  stage 4: estimation of the discriminant model and assessingoverall fit
  stage 5: interpretation of the results
  stage 6: validation of the results
  a managerial overview
  a three-group illustrative example
  stage 1: objectives of discriminant analysis
  stage 2: research design for discriminant analysis
  stage 3: assumptions of discriminant analysis
  stage 4: estimation of the discriminant model and assessingoverall fit
  stage 5: interpretation of three-group discriminant analysisresults
  stage 6: validation of the discriminant results
  a managerial overview
  logistic regression: regression with a binary dependentvariable
  representation of the binary dependent variable
  sample size
  estimating the logistic regression model
  assessing the goodness-of-fit of the estimation model
  testing for significance of the coefficients
  interpreting the coefficients
  calculating probabilities for a specific value of the independentvariable
  overview of interpreting coefficients
  summary
  an illustrative example of logistic regression
  stages 1, 2, and 3: research objectives, research design, andstatistical assumptions
  stage 4: estimation of the logistic regression model andassessing overall fit
  stage 5: interpretation of the results
  stage 6: validation of the results
  a managerial overview
  summary 434 . questions 437 . suggested readings
  references
 chapter 8 anova and manova
  manova: extending univariate methods for assessing groupdifferences
  multivariate procedures for assessing group differences
  a hypothetical illustration of manova
  analysis design
  differences from discriminant analysis
  forming the variate and assessing differences
  a decision process for manova
  stage 1: objectives of manova
  when should we use manova?
  types of multivariate questions suitable for manova
  selecting the dependent measures
  stage 2: issues in the research design of manova
  sample size requirements—overall and by group
  factorial designs—two or more treatments
  using covariates—ancova and mancova
  manova counterparts of other anova designs
  a special case of manova: repeated measures
  stage 3: assumptions of anova and manova
  independence
  equality of variance–covariance matrices
  normality
  linearity and multicollinearity among the dependentvariables
  sensitivity to outliers
  stage 4: estimation of the manova model and assessing overallfit
  estimation with the general linear model
  criteria for significance testing
  statistical power of the multivariate tests
  stage 5: interpretation of the manova results
  evaluating covariates
  assessing effects on the dependent variate
  identifying differences between individual groups
  assessing significance for individual dependent variables
  stage 6: validation of the results
  summary
  illustration of a manova analysis
  example 1: difference between two independent groups
  stage 1: objectives of the analysis
  stage 2: research design of the manova
  stage 3: assumptions in manova
  stage 4: estimation of the manova model and assessing the overallfit
  stage 5: interpretation of the results
  example 2: difference between k independent groups
  stage 1: objectives of the manova
  stage 2: research design of manova
  stage 3: assumptions in manova
  stage 4: estimation of the manova model and assessing overallfit
  stage 5: interpretation of the results
  example 3: a factorial design for manova with two independentvariables
  stage 1: objectives of the manova
  stage 2: research design of the manova
  stage 3: assumptions in manova
  stage 4: estimation of the manova model and assessing overallfit
  stage 5: interpretation of the results
  summary
  a managerial overview of the results
  summary 498 . questions 500 . suggested readings
  references
section iii analysis using interdependence techniques
 chapter 9 grouping data with cluster analysis
  what is cluster analysis?
  cluster analysis as a multivariate technique
  conceptual development with cluster analysis
  necessity of conceptual support in cluster analysis
  how does cluster analysis work?
  a simple example
  objective versus subjective considerations
  cluster analysis decision process
  stage 1: objectives of cluster analysis
  stage 2: research design in cluster analysis
  stage 3: assumptions in cluster analysis
  stage 4: deriving clusters and assessing overall fit
  stage 5: interpretation of the clusters
  stage 6: validation and profiling of the clusters
  an illustrative example
  stage 1: objectives of the cluster analysis
  stage 2: research design of the cluster analysis
  stage 3: assumptions in cluster analysis
  employing hierarchical and nonhierarchical methods
  step 1: hierarchical cluster analysis (stage 4)
  step 2: nonhierarchical cluster analysis (stages 4, 5, and6)
  summary 561 . questions 563 . suggested readings
  references
 chapter 10 mds and correspondence analysis
  what is multidimensional scaling?
  comparing objects
  dimensions: the basis for comparison
  a simplified look at how mds works
  gathering similarity judgments
  creating a perceptual map
  interpreting the axes
  comparing mds to other interdependence techniques
  individual as the unit of analysis
  lack of a variate
  a decision framework for perceptual mapping
  stage 1: objectives of mds
  key decisions in setting objectives
  stage 2: research design of mds
  selection of either a decompositional (attribute-free)
  or compositional (attribute-based) approach
  objects: their number and selection
  nonmetric versus metric methods
  collection of similarity or preference data
  stage 3: assumptions of mds analysis
  stage 4: deriving the mds solution and assessing overallfit
  determining an object’s position in the perceptual map
  selecting the dimensionality of the perceptual map
  incorporating preferences into mds
  stage 5: interpreting the mds results
  identifying the dimensions
  stage 6: validating the mds results
  issues in validation
  approaches to validation
  overview of multidimensional scaling
  correspondence analysis
  distinguishing characteristics
  differences from other multivariate techniques
  a simple example of ca
  a decision framework for correspondence analysis
  stage 1: objectives of ca
  stage 2: research design of ca
  stage 3: assumptions in ca
  stage 4: deriving ca results and assessing overall fit
  stage 5: interpretation of the results
  stage 6: validation of the results
  overview of correspondence analysis
  illustrations of mds and correspondence analysis
  stage 1: objectives of perceptual mapping
  identifying objects for inclusion
  basing the analysis on similarity or preference data
  using a disaggregate or aggregate analysis
  stage 2: research design of the perceptual mapping study
  selecting decompositional or compositional methods
  selecting firms for analysis
  nonmetric versus metric methods
  collecting data for mds
  collecting data for correspondence analysis
  stage 3: assumptions in perceptual mapping
  multidimensional scaling: stages 4 and 5
  stage 4: deriving mds results and assessing overall fit
  stage 5: interpretation of the results
  overview of the decompositional results
  correspondence analysis: stages 4 and 5
  stage 4: estimating a correspondence analysis
  stage 5: interpreting ca results
  overview of ca
  stage 6: validation of the results
  a managerial overview of mds results
  summary 623 . questions 625 . suggested readings
  references
section iv structural equations modeling
 chapter 11 sem: an introduction
  what is structural equation modeling?
? estimation of multiple interrelated dependencerelationships
  incorporating latent variables not measured directly
  defining a model
  sem and other multivariate techniques
  similarity to dependence techniques
  similarity to interdependence techniques
  the emergence of sem
  the role of theory in structural equation modeling
  specifying relationships
  establishing causation
  developing a modeling strategy
  a simple example of sem
  the research question
  setting up the structural equation model for path analysis
  the basics of sem estimation and assessment
  six stages in structural equation modeling
  stage 1: defining individual constructs
  operationalizing the construct
  pretesting
  stage 2: developing and specifying the measurement model
  sem notation
  creating the measurement model
  stage 3: designing a study to produce empirical results
  issues in research design
  issues in model estimation
  stage 4: assessing measurement model validity
  the basics of goodness-of-fit
  absolute fit indices
  incremental fit indices
  parsimony fit indices
  problems associated with using fit indices
  unacceptable model specification to achieve fit
  guidelines for establishing acceptable and unacceptable fit
  stage 5: specifying the structural model
  stage 6: assessing the structural model validity
  structural model gof
  competitive fit
  comparison to the measurement model
  testing structural relationships
  summary 678 . questions 680 . suggested readings
  appendix 11a: estimating relationships using path analysis
  appendix 11b: sem abbreviations
  appendix 11c: detail on selected gof indices
  references
 chapter 12 applications of sem
  part 1: confirmatory factor analysis
  cfa and exploratory factor analysis
  a simple example of cfa and sem
  a visual diagram
  sem stages for testing measurement theory validation withcfa
  stage 1: defining individual constructs
  stage 2: developing the overall measurement model
  unidimensionality
  congeneric measurement model
  items per construct
  reflective versus formative constructs
  stage 3: designing a study to produce empirical results
  measurement scales in cfa
  sem and sampling
  specifying the model
  issues in identification
  avoiding identification problems
  problems in estimation
  stage 4: assessing measurement model validity
  assessing fit
  path estimates
  construct validity
  model diagnostics
  summary example
  cfa illustration
 ?stage 1: defining individual constructs
  stage 2: developing the overall measurement model
  stage 3: designing a study to produce empirical results
  stage 4: assessing measurement model validity
  hbat cfa summary
  part 2: what is a structural model?
  a simple example of a structural model
  an overview of theory testing with sem
  stages in testing structural theory
  one-step versus two-step approaches
  stage 5: specifying the structural model
  unit of analysis
  model specification using a path diagram
  designing the study
  stage 6: assessing the structural model validity
  understanding structural model fit from cfa fit
  examine the model diagnostics
  sem illustration
  stage 5: specifying the structural model
  stage 6: assessing the structural model validity
  part 3: extensions and applications of sem
  reflective versus formative measures
  reflective versus formative measurement theory
  operationalizing a formative construct
  distinguishing reflective from formative constructs
  which to use—reflective or formative?
  higher-order factor analysis
  empirical concerns
  theoretical concerns
  using second-order measurement theories
  when to use higher-order factor analysis
  multiple groups analysis
  measurement model comparisons
  structural model comparisons
  measurement bias
  model specification
  model interpretation
  relationship types: mediation and moderation
  mediation
  moderation
  longitudinal data
  additional covariance sources: timing
  using error covariances to represent added covariance
  partial least squares
  characteristics of pls
  advantages and disadvantages of pls
  choosing pls versus sem
  summary 778 . questions 781 . suggested readings
references
index
下载地址