多元微积分(第三版 英文影印版)
出版时间:2012年版
内容简介
《数学经典教材(影印版):多元微积分(第3版)》是全面,知识体系新颖的多变量微积分教程。旨在解决广大多变量微积分学者遇到的新老问题,包内包括:(第一部分)基础资料:向量;向量微分;多变量函数;链式法则和梯度;(第二部分)最大值,最小值和泰勒公式:最大值和最小值;高阶导数;(第三部分)曲线积分和双积分:势函数;曲线积分;双积分;格林定理;(第四部分)三重积分和曲面积分:三重积分;曲面积分;(第五部分)映射、反映射和变量变换公式:矩阵;线性映射;行列式;多变量函数的应用;变量变换公式;附录:傅里叶级数。《数学经典教材(影印版):多元微积分(第3版)》读者对象:数学专业的本科生、研究生和相关专业的数学工作者。
目录
part one basic material
chapter i vectors
1. definition of points in space
2. located vectors
3. scalar product
4. the norm of a vector
5. parametric lines
6. planes
7. the cross product
chapter ii differentiation of vectors
1. derivative
2. length of curves
chapter iii functions of several variables
1. graphs and level curves
2. partial derivatives
3. differentiability and gradient
4. repeated partial derivatives
chapter iv the chain rule and the gradient
1. the chain rule
2. tangent plane
3. directional derivative
4. functions depending only on the distance from the origin
5. the law of conservation of energy
6. further technique in partial differentiation
part two maxima, minima, and taylor's formula
chapter v maximum and minimum
1. critical points
2. boundary points
3. lagrange multipliers
chapter vi higher derivatives
1. the first two terms in tayior's formula
2. the quadratic term at critical points
3. algebraic study of a quadratic form
4. partial differential operators
5. the general expression for tayior's formula
appendix. taylor's formula in one variable
note. chapter ix on double integrals is self contained, and couldbe covered here.
part three curve integrals and double integrals
chapter vii potential functions
1. existence and uniqueness of potential functions
2. local existence of potential functions
3. an important special vector field
4. differentiating under the integral
5. proof of the local existence theorem
chapter viii curve integrals
1. definition and evaluation of curve integrals
2. the reverse path
3. curve integrals when the vector field has a potentialfunction
4. dependence of the integral on the path
chapter ix double integrals
1. double integrals
2. repeated integrals
3. polar coordinates
chapter x green's theorem
1. the standard version
2. the divergence and the rotation of a vector field
part four triple and surface integrals
chapter xi triple integrals
1. triple integrals
2. cylindrical and spherical coordinates
3. center of mass
chapter xii surface integrala
1. parametrization, tangent plane, and normal vector
2. surface area
3. surface integrals
4. cuff and divergence of a vector field
5. divergence theorem in 3-space
6. stokes' theorem
part five mappings, inverse mappings, and change of variablesformula
chapter xiii matrices
1. matrices
2. multiplication of matrices
chapter xiv linear mappings
1. mappings
2. linear mappings
3. geometric applications
4. composition and inverse of mappings
chapter xv determinants
1. determinants of order 2
2. determinants of order 3
3. additional properties of determinants
4. independence of vectors
5. determinant of a product
6. inverse of a matrix
chapter xvi applications to functions of several variables
1. the jacobian matrix
2. differentiabiiity
3. thc chain rule
4. invcrse mappings
5. implicit functions
6. the hessian
chapter xvii the change of variables formula
1. determinants as area and volume
2. dilations
3. change of variables formula in two dimensions
4. application of green's formula to the change of variablesformula
5. change of variables formula in three dimensions
6. vector fields on the sphere
appendix fourier series
1. general scalar products
2. computation of fourier series
answers
index