欢迎访问学兔兔,学习、交流 分享 !

返回首页 |

加性数论(经典基)

收藏
  • 大小:6.21 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
加性数论(经典基)
出版时间:2012年版
内容简介
  《加性数论(经典基)》分为上下2卷。堆垒数论讨论的是很经典的直接问题。在这个问题中,首先假定有一个自然数集合a和大于等于2的整数h,定义的和集ha是由所有的h和a中元素乘积的和组成,试图描述和集ha的结构;相反地,在逆问题中,从和集ha开始,去寻找这样的一个集合a。近年来,有关整数有限集的逆问题方面取得了显著进展。特别地,freiman, kneser, plünnecke, vosper以及一些其他的学者在这方面做出了突出的贡献。本书中包括了这些结果,并且用freiman定理的ruzsa证明将本书的内容推向了高潮。
目录
preface
notation and conventior
i waring's problem
1 sums of polygor
1.1 polygonal number
1.2 lagrange's theorem
1.3 quadratic forms
1.4 ternary quadratic forms
1.5 sums of three squares
1.6 thin sets of squares
1.7 the polygonal number theorem
1.8 notes
1.9 exercises
2 waring's problem for cubes
2.1 sums of cubes
2.2 the wieferich-kempner theorem
2.3 linnik's theorem
2.4 sums of two cubes
2.5 notes
.2.6 exercises
3 the hilbert-waring theorem
3.1 polynomial identities and a conjecture of hurwitz
3.2 hermite polynomials and hilbert's identity
3.3 a proof by induction
3.4 notes
3.5 exercises
4 weyl's inequality
4.1 tools
4.2 difference operator
4.3 easier waring's problem
4.4 fractional parts
4.5 weyl's inequality and hua's lemma
4.6 notes
4.7 exercises
5 the hardy-littlewood asymptotic formula
5.1 the circle method
5.2 waring's problem for k = 1
5.3 the hardy-littlewood decomposition
5.4 the minor arcs
5.5 the major arcs
5.6 the singular integral
5.7 the singular series
5.8 conclusion
5.9 notes
5.10 exercises
ii the goldbach conjecture
6 elementary estimates for primes
6.1 euclid's theorem
6.2 chebyshev's theorem
6.3 merter's theorems
6.4 brun's method and twin primes
6.5 notes
6.6 exercises
7 the shnirel'man-goldbach theorem
7.1 the goldbach conjecture
7.2 the selberg sieve
7.3 applicatior of the sieve
7.4 shnirel'man derity
7.5 the shnirel'man-goldbach theorem
7.6 romanov's theorem
7.7 covering congruences
7.8 notes
7.9 exercises
8 sums of three primes
8.1 vinogradov's theorem
8.2 the singular series
8.3 decomposition into major and minor arcs
8.4 the integral over the major arcs
8.5 an exponential sum over primes
8.6 proof of the asymptotic formula
8.7 notes
8.8 exercise
9 the linear sieve
9.1 a general sieve
9.2 cortruction of a combinatorial sieve
9.3 approximatior
9.4 the jurkat-richert theorem
9.5 differential-difference equatior
9.6 notes
9.7 exercises
10 chen's theorem
10.1 primes and almost primes
10.2 weights
10.3 prolegomena to sieving
10.4 a lower bound for s(a, p, z)
10.5 an upper bound for s(aq, p, z)
10.6 an upper bound for s(b, p, y)
10.7 a bilinear form inequality
10.8 conclusion
10.9 notes
iii appendix
arithmetic functior
a.1 the ring of arithmetic functior
a.2 sums and integrals
a.3 multiplicative functior
a.4 the divisor function
a.5 the euler φ-function
a.6 the mobius function
a.7 ramanujan sums
a.8 infinite products
a.9 notes
a.10 exercises
bibliography
index
下载地址