欢迎访问学兔兔,学习、交流 分享 !

返回首页 |

分形几何学及应用 上册

收藏
  • 大小:71.18 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
分形几何学及应用 上册
作者:王兴元,孟娟 著
出版时间:2015年版
内容简介
  分形几何学是描述具有无规则结构复杂系统形态的一门新兴边缘科学。在过去30多年中,分形几何学已成功地应用于许多不同学科的研究领域,并对一些未解难题的研究取得了突破性进展。今天,分形几何学已被认为是研究复杂问题最好的一种语言和工具,成为世人关注的学术热点之一。《分形几何学及应用(上册)》详细介绍了分形几何学中具有重要地位的M-J集的生成机理,探索了M-J集发展、演化、控制、应用的规律,用动力系统的观点对M-J集的复杂性进行了刻画。主要内容有:分形几何学的发展史及研究方法,分形几何学的基本理论,序列和映射中的分形与混沌,广义M-J集,广义M-J集非边界区域分形结构,噪声扰动的广义M-J集及其控制,高维广义M-J集,牛顿变换的广义M-J集,IFS吸引子和广义M-J集在物理学中的应用。《分形几何学及应用(上册)》深入浅出,图文并茂,文献丰富,可供理工科大学教师、高年级学生、研究生、博士后阅读,也可供自然科学和工程技术领域中的研究人员参考。
目录
第1章 绪论 1.1分形理论的建立与发展1.1.1分形概念的提出与理论的建立1.1.2分形理论的发展1.2分形理论的研究现状1.3分形应用的若干研究领域参考文献
第2章 分形的基本理论2.1分形2.1.1分形的定义2.1.2分形空间2.1.3分形维数2.2构造分形图的逃逸时间算法2.3分形与混沌的关系2.4刻画混沌运动的特征量——Lyapunov指数2.4.1Lyapunov指数的定义2.4.2卡普兰一约克猜想2.4.3差分方程组计算Lyapunov指数的方法2.4.4实验数据计算I~yapunov指数的方法参考文献
第3章 序列和映射中的分形与混沌3.1序列的动力学特性3.1.1Batrachion序列中的混沌现象3.1.2广义高斯和的分形序列及其M—J集3.1.3基于分形可视化方法研究广义3x+1函数的动力学特性3.1.4基于广义M集的逃逸线图研究一维映射的动力学3.2Logistic映射和C—K映射中的分形与混沌3.2.1二维Logistic映射的分岔与分形3.2.2复合Logisttic映射中的逆分岔与分形3.2.3C—K映射中的混沌与分形参考文献
第4章 广义M—J集4.1复映射的广义M—J集4.1.1一个非解析复映射的广义J集4.1.2一个非解析复映射的广义M集4.1.3复合复映射的J集4.1.4复合复映射的广义M集4.1.5广义M—J集之间Hausdorff距离4.2准正弦斐波那契函数的M—J集4.2.1准正弦斐波那契双曲动力系统的动力学研究4.2.2噪声干扰的准正弦斐波那契函数的J集4.2.3噪声干扰的准正弦斐波那契函数的M集4.3高次复多项式的M—J集4.3.1复多项式映射的广义M—J集理论4.3.2高次复多项式的M—J集4.3.3高次复多项式映射的类M集4.3.4一类复合复映射的类M集参考文献……第5章 广义M-J集非边界区域分形结构第6章 噪声扰动广义M-J集及其控制
下载地址