欢迎访问学兔兔,学习、交流 分享 !

返回首页 |

天才引导的历程:数学中的伟大定理

收藏
  • 大小:55.57 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
天才引导的历程:数学中的伟大定理
作者:(美)邓纳姆 著
出版时间:2013年版
内容简介
  《天才引导的历程:数学中的伟大定理》将两千多年的数学发展历程融为十二章内容,每章都包含了三个基本组成部分,即历史背景、人物传记以及在这些“数学杰作”中所表现出的创造性。作者精心挑选了一些杰出的数学家及其所创造的伟大定理,如欧几里得、阿基米德、牛顿和欧拉。而这一个个伟大的定理,不仅串起了历史的年轮,更是串起了数学这门学科所涵盖的各个深邃而不乏实用性的领域。当然,这不是一本典型的数学教材,而是一本大众读物,它会让热爱数学的人体会到绝处逢生的喜悦,让讨厌数学的人从此爱上数学。
目录
译者序
前言
第1章 希波克拉底的月牙面积定理(约公元前440年)
论证数学的诞生
有关求面积问题的一些评论
伟大的定理:月牙面积
后记
第2章 欧几里得对毕达哥拉斯定理的证明(约公元前300年)
欧几里得的《几何原本》
第一卷:准备工作
第一卷:早期命题
第一卷:平行线及有关命题
伟大的定理:毕达哥拉斯定理
后记
第3章 欧几里得与素数的无穷性(约公元前300年)
《几何原本》第二至六卷
《几何原本》中的数论
伟大的定理:素数的无穷性
《几何原本》的最后几卷
后记
第4章 阿基米德的求圆面积定理(约公元前225年)
阿基米德的生平
伟大的定理:求圆面积
阿基米德名作:《论球和圆柱》
后记
第5章 海伦的三角形面积公式(约公元75年)
阿基米德之后的古典数学
伟大的定理:海伦的三角形面积公式
后记
第6章 卡尔达诺与三次方程解(1545年)
霍拉肖代数的故事
伟大的定理:三次方程的解
有关解方程的其他问题
后记
第7章 艾萨克?牛顿的珍宝(17世纪60年代后期)
英雄世纪的数学
解放了的头脑
牛顿二项式定理
伟大的定理:牛顿的π近似值
后记
第8章 伯努利兄弟与调和级数(1689年)
莱布尼茨的贡献
伯努利兄弟
伟大的定理:调和级数的发散性
最速降线的挑战
后记
第9章 莱昂哈德?欧拉非凡的求和公式(1734年)
通晓数学的大师
伟大的定理:计算1+14+19+116+125+…+1k2+…的值
后记
第10章 欧拉数论集锦(1736年)
费马的遗产
伟大的定理:欧拉对费马猜想的反驳
后记
第11章 连续统的不可数性(1874年)
19世纪的数学
康托尔与无穷的挑战
伟大的定理:连续统的不可数性
后记
第12章 康托尔与超限王国(1891年)
无限基数的性质
伟大的定理:康托尔定理
后记
结束语
参考文献
下载地址