拓扑空间(英文)
作者:(美)布斯科斯 著
出版时间:2012年版
内容简介
本书是一部本科生学习拓扑空间的基础教程。引导读者很好的学习拓扑中有关几何的东西什么是最重要的。本书的内容分为三大部分,线和面、矩阵空间和拓扑空间。书中将大量的数学词汇概念囊括其中,不要求读者对简单定理或者集合知识十分了解,从而减少读者理解上的难度。收敛定理的应用在帮助读者抓住重点的同时,逐渐接触并理解拓扑的概念,书中的知识点步步逼近,前九节重在为本科生讲述矩阵空间的知识,同时也包括了大量的材料,这些将成为研究生学习的教程。本书由(美)布斯科斯著。
目录
Preface
PART Ⅰ THE LINE AND THE PLANE
Chapter 1 What Topology Is About
Topological Equivalence
Continuity and Convergence
A Few Conventions
Extra: Topological Diversions
Exercises
Chapter 2 Axioms for R
Extra: Axiom Systems
Exercises
Chapter 3 Convergent Sequences and Continuity
Subsequences
Uniform Continuity
The Plane
Extra: Bolzano (1781-1848)
Exercises
ChaPter 4 Curves in the Plane
Curves
Homeomorphic Sets
Brouwer's Theorem
Extra: L.E.J. Brouwer (1881-1966)
PART Ⅱ METRI SPACES
Chapter 5 Metrics
Extra: Camille Jordan (1838-1922)
Exercises
Chapter 6 Open and Closed Sets
Subsets of a Metric Space
Collections of Sets
Similar Metrics
Interior and Closure
The Empty Set
Extra: Cantor (1845-1918)
Exercises
Chapter 7 Completeness
Extra: Meager Sets and the Mazur Game
Exercises
Chapter 8 Uniform Convergence
Extra: Spaces of Continuous Functions
Exercises
Chapter 9 Sequential Compactness
Extra: The p-adic Numbers
Exercises
Chapter 10 Convergent Nets
Inadequacy of Sequences
Convergent Nets
-Extra: Knots
Exercises
Chapter 11 Transition to TOpology
Generalized Convergence
Topologies
Extra: The Emergence of the Professional Mathematician
Exercises
PART Ⅲ TOPOLOGICAL SPACES
Chapter 12 Topological Spaces
Extra: Map Coloring
Exercises
Chapter 13 Compactness and the Hausdorff Property
Compact Spaces
Hausdorff Spaces
Extra: Hausdorff and the Measure Problem
Exercises
Chapter 14 Products and Quotients
Product Spaces
Quotient Spaces
Extra: Surfaces
Exercises
Chapter 15 The Hahn-Tietze-Tong-Urysohn Theorems
Urysohn's Lemma
Interpolation and Extension
Extra: Nonstandard Mathematics
Exercises
Chapter 16 Connectedness
Connected Spaces
The Jordan Theorem
Extra: Continuous Deformation of Curves
Exercises
Chapter 17 Tvchonoffs Theorem
Extra: The Axiom of Choice
Exercises
PAler Ⅳ PosTsciuer
Chapter 18 A Smorgasbord for Further Study
Countability Conditions
Separation Conditions
Compactness Conditions
Compactifications
Connectivity Conditions
Extra: Dates from the History of General Topology
Exercises
Chapter 19 Countable Sets
Extra: The Continuum Hypothesis
A Farewell to the Reader
Literature
Index of Symbols
Index of Terms