艺术数学
作者:马传渔,邵进,李栋宁 编
出版时间:2012年版
内容简介
《艺术数学》共5章,包括数列的极限、函数与极限、导数与微分、导数的应用、不定积分、定积分等数学内容,涉及音乐、美术、雕塑等各个艺术学领域,以及股市艺术、分形艺术、建筑艺术等“艺术”知识。本书以“艺术”中的数学元素为鸿线,发掘和建立艺术与数学彼此之间知识的融合、理念的沟通和思维的创新。本书采用直观明了的几何论证和通俗易懂的逻辑推理的方法,强调知识性、趣味性、鉴赏性和可读性。《艺术数学》可作为高等院校艺术系“数学”课程的教材,或文科其他各专业的数学参考书,也可作为提高学习兴趣、增强文化素养的课外读物。本书由马传渔、邵进、李栋宁编著。
目录
前言
第1章 黄金数
1.1黄金分割与体型美
1.2《维纳斯》、《蒙娜丽莎》与黄金分割
1.3斐波那契数的闪光点
1.4黄金数与斐波那契数列的联系与应用
思考探究题
第2章 音乐与数学
2.1音阶与261.63Hz
2.2乐声与y=Asin(ωχ+φ)
2.3曲调与和谐性原理
2.4“无穷”的艺术
2.5对称美
思考探究题
第3章 黄金图形
3.1黄金三角形与图案设计
3.2黄金矩形与M.C.Escher的杰作
3.3大自然中迷人的螺线
思考探究题
第4章 图形艺术
4.1维数艺术
4.2图形的描绘
4.3视幻觉与不可能图形
4.4美术作品与默比乌斯带
思考探究题
第5章 雪花曲线与镶嵌艺术
5.1雪花曲线
5.2互逆运算
5.3镶嵌艺术
5.4雕塑艺术
思考探究题
参考文献
结束语