工程数学:复变函数与数学物理方法
作者:郭玉翠 编著
出版时间:2014年
内容简介
《工程数学:复变函数与数学物理方法》包含复变函数和数学物理方法两部分。复变函数部分的基本内容有:复数与复变函数的基本概念、复变函数的导数与积分、解析函数的性质和应用、复变函数的幂级数表示方法、留数定理及其应用等。数学物理方法部分的基本内容包括:波动方程、热传导方程、稳定场位势方程的导出、定解问题的提法;分离变量法求解定解问题的过程和步骤;二阶线性常微分方程的幂级数解法和斯图姆-刘维尔本征值问题;贝塞尔函数和勒让德函数的定义、性质与应用;求解定解问题的行波法、积分变换法和格林函数法等。《工程数学:复变函数与数学物理方法》可以作为理科非数学专业和工科各专业本科生的教材或教学参考书。
目录
第1章 复变函数及其导数与积分
1.1 引言
1.2 复数与复变函数
1.2.1 复数
1.2.2 复平面
1.2.3 复数加法的几何表示
1.2.4 复平面上的点集
1.2.5 复变函数
1.3 复变函数的极限与连续
1.4 复球面与无穷远点
1.4.1 扩充复平面
1.4.2 无穷大极限
1.5 解析函数
1.5.1 复变函数的导数与微分
1.5.2 解析函数的概念及其简单性质
1.5.3 柯西一黎曼条件
1.6 复变函数的积分
1.6.1 复变函数积分的概念与计算
1.6.2 复变函数积分的简单性质
1.6.3 柯西积分定理及其推广
1.6.4 柯西积分公式及其推论
习题1
第2章 复变函数的幂级数
2.1 复数序列和复数项级数
2.1.1 复数序列及其收敛性
2.1.2 复数项级数及其收敛性
2.1.3 复数项级数的绝对收敛性
2.2 复变函数项级数和复变函数序列
2.3 幂级数
2.4 幂级数和函数的解析性
2.5 解析函数的泰勒展开式
2.6 解析函数零点的孤立性及唯一性定理
2.7 解析函数的洛朗级数展开式
2.7.1 洛朗级数
2.7.2 解析函数的洛朗展开式
2.7.3 洛朗级数与泰勒级数的关系
2.7.4 解析函数在孤立奇点邻域内的洛朗展开式
2.8 解析函数的孤立奇点及其分类
2.8.1 可去奇点
2.8.2 极点
2.8.3 本性奇点
2.8.4 复变函数的零点与极点的关系
2.8.5 复变函数在无穷远点的性态
习题2
第3章 留数及其应用
3.1 留数与留数定理
3.2 留数的计算
3.2.1 一级极点的情形
3.2.2 高级极点的情形
3.3 无穷远点处的留数
3.4 留数在定积分计算中的应用
……
第2篇 数学物理方法