计算机科学丛书 离散数学及其应用(原书第8版·本科教学版)
作者: (美)肯尼思·H.罗森(Kenneth H.Rosen) 著;徐六通,杨娟,吴斌 译
出版时间:2020年版
丛编项: 计算机科学丛书
内容简介
《离散数学及其应用(原书第8版·本科教学版)》是经典的离散数学教材,被全球数百所大学广为采用。本科教学版缩减了篇幅,保留的主要内容包括:逻辑和证明,集合、函数、序列、求和与矩阵,计数,关系,图,树,布尔代数。《离散数学及其应用(原书第8版·本科教学版)》取材广泛,除包括定义、定理的严格陈述外,还配备大量的例题、图表、应用实例和练习。第8版做了与时俱进的更新,成为更加实用的教学工具。《离散数学及其应用(原书第8版·本科教学版)》可作为高等院校数学、计算机科学和计算机工程等专业的教材,也可作为科技领域从业人员的参考书。《离散数学及其应用(原书第8版·本科教学版)》是介绍离散数学理论和方法的经典教材,被全球数百所高校采用,获得了极大的成功。第8版做了与时俱进的修改,同时更新了配套教辅资源,成为更加实用的教学工具。本科教学版缩减了篇幅,适用于数学、计算机科学、计算机工程、信息技术等专业的学生。《离散数学及其应用(原书第8版·本科教学版)》特色:章节:保留了逻辑和证明、基本结构、计数和高级计数、关系、图、数和布尔代数等内容,删除了算法、数论和密码学、归纳与递归、离散概率、计算模型等内容。例题:共400多道例题,用于阐明概念、建立不同主题之间的关联以及介绍实际应用。应用:涉及的领域包括计算机科学、数据网络、心理学、化学、工程学、语言学、生物学、商业和因特网等,展示了离散数学的实用性。算法:每一章都介绍了一些关键算法,提供伪代码,并简要分析其计算复杂度。练习、复习题和补充练习:共有2000多道难度各异的练习题,可以满足不同层次学生的需求。此外,还有一些研究性题目,帮助学生通过计算来探索新知识和新想法。
目录
出版者的话
改编者序
译者序
前言
在线资源
致学生
作者简介
符号表
第1章 基础:逻辑和证明
1.1 命题逻辑
1.1.1 引言
1.1.2 命题
1.1.3 条件语句
1.1.4 复合命题的真值表
1.1.5 逻辑运算符的优先级
1.1.6 逻辑运算和比特运算
奇数编号练习
1.2 命题逻辑的应用
1.2.1 引言
1.2.2 语句翻译
1.2.3 系统规范说明
1.2.4 布尔搜索
1.2.5 逻辑谜题
1.2.6 逻辑电路
奇数编号练习
1.3 命题等价式
1.3.1 引言
1.3.2 逻辑等价式
1.3.3 德·摩根律的运用
1.3.4 构造新的逻辑等价式
1.3.5 可满足性
1.3.6 可满足性的应用
1.3.7 可满足性问题求解
奇数编号练习
1.4 谓词和量词
1.4.1 引言
1.4.2 谓词
1.4.3 量词
1.4.4 有限域上的量词
1.4.5 受限域的量词
1.4.6 量词的优先级
1.4.7 变量绑定
1.4.8 涉及量词的逻辑等价式
1.4.9 量化表达式的否定
1.4.10 语句到逻辑表达式的翻译
1.4.11 系统规范说明中量词的使用
1.4.12 选自路易斯·卡罗尔的例子
1.4.13 逻辑程序设计
奇数编号练习
1.5 嵌套量词
1.5.1 引言
1.5.2 理解涉及嵌套量词的语句
1.5.3 量词的顺序
1.5.4 数学语句到嵌套量词语句的翻译
1.5.5 嵌套量词到自然语言的翻译
1.5.6 汉语语句到逻辑表达式的翻译
1.5.7 嵌套量词的否定
奇数编号练习
1.6 推理规则
1.6.1 引言
1.6.2 命题逻辑的有效论证
1.6.3 命题逻辑的推理规则
1.6.4 使用推理规则建立论证
1.6.5 消解律
1.6.6 谬误
1.6.7 量化命题的推理规则
1.6.8 命题和量化命题推理规则的组合使用
奇数编号练习
1.7 证明导论
1.7.1 引言
1.7.2 一些专用术语
1.7.3 理解定理是如何陈述的
1.7.4 证明定理的方法
1.7.5 直接证明法
1.7.6 反证法
1.7.7 归谬证明法
1.7.8 证明中的错误
1.7.9 良好的开端
奇数编号练习
1.8 证明的方法和策略
1.8.1 引言
1.8.2 穷举证明法和分情形证明法
1.8.3 存在性证明
1.8.4 唯一性证明
1.8.5 证明策略
1.8.6 寻找反例
1.8.7 证明策略实践
1.8.8 拼接
1.8.9 开放问题的作用
1.8.10 其他证明方法
奇数编号练习
章末资料(在线)
……
第2章 基本结构:集合、函数、序列、求和与矩阵
第3章 计数
第4章 高级计数技术
第5章 关系
第6章 图
第7章 树
第8章 布尔代数
推荐读物(在线)
参考文献(在线)
奇数编号练习答案(在线)