考研数学 基础知识复习大全 数学 1 适用 中公版 2020版
作者:中公教育研究生考试研究院编著
出版时间: 2018年版
内容简介
《中公版·2020考研数学:基础知识复习大全(数学一适用)》是中公教育研究生考试研究院针对2020年考研的考生编写的一本综合复习类图书。本书适合进行轮复习或数学基础较差的考生使用。 \n \n 本书按照考研数学三的大纲分为三篇,共22章。书中每一章的“考纲分级要求”模块将大纲中的考点按照“了解→理解→掌握→会求”四个层次进行了划分,使考生可以更清楚地了解各考点需要掌握的程度;“基础知识精讲”模块从浅显的角度切入,详细地讲述了各章节所涉及的基础知识,并对重要考点配有二维码,对易混易错的知识点设置了“要点点拨”,帮助考生更清晰地理解和记忆相关知识;“典型例题精编”模块精选了大量典型例题,这些例题难易兼顾,基本涵盖了考试中常见的题型;此外,“同步习题”模块提供了适量习题供考生自测学习效果,与典型例题相比,这部分题目综合性不强,更重基础。
目录
章.函数、极限、连续22 \n
一、函数2 \n
(一)函数的概念及表示法2 \n
(二)函数的几种特征2 \n
(三)函数的运算4 \n
(四)常见的函数类型5 \n
二、极限7 \n
(一)极限的概念7 \n
(二)极限的性质8 \n
(三)无穷小量和无穷大量8 \n
(四)两个重要极限10 \n
(五)极限的运算法则10 \n
(六)极限存在的判别准则11 \n
三、连续11 \n
(一)函数的连续性11 \n
(二)间断点及其类型11 \n
(三)闭区间上连续函数的性质12 \n
题型一——函数及其性质12 \n
题型二——函数极限的计算16 \n
题型三——无穷小量的比较20 \n
题型四——函数连续性的判断及相关性质21 \n
一、选择题24 \n
二、填空题24 \n
三、解答题同步习题参考答案25 \n
第二章一元函数微分学30 \n
一、导数与微分30 \n
(一)导数的基本概念30 \n
(二)微分的基本概念及性质31 \n
二、导数与微分的计算33 \n
(一)导数与微分的基本公式33 \n
(二)导数(微分)运算法则33 \n
(三)常考题型34 \n
(四)高阶导数35 \n
三、微分中值定理35 \n
(一)费马引理35 \n
(二)罗尔定理35 \n
(三)拉格朗日中值定理36 \n
(四)柯西中值定理36 \n
四、导数的应用37 \n
(一)导数性质的相关应用37 \n
(二)利用导数研究函数的相关性质38 \n
(三)几何应用42 \n
题型一——函数可导、连续与可微的关系43 \n
题型二——导数的计算45 \n
题型三——高阶导数的计算49 \n
题型四——微分中值定理49 \n
题型五——导数的应用52 \n
一、选择题62 \n
二、填空题63 \n
三、解答题63 \n
同步习题参考答案65 \n
第三章一元函数积分学7272 \n
一、不定积分72 \n
(一)原函数与不定积分72 \n
(二)不定积分的计算方法73 \n
二、定积分76 \n
(一)定积分的概念及性质76 \n
(二)微积分基本定理77 \n
(三)定积分的求解78 \n
(四)定积分的应用79 \n
三、反常积分82 \n
(一)无穷限反常积分82 \n
(二)无界函数的反常积分(瑕积分)82 \n
题型一——原函数的概念82 \n
题型二——不定积分的计算83 \n
题型三——定积分的性质及变上限积分函数88 \n
题型四——定积分的计算90 \n
题型五——定积分的应用93 \n
题型六——反常积分97 \n
一、选择题97 \n
二、填空题97 \n
三、解答题98 \n
同步习题参考答案100 \n
第四章向量代数和空间解析几何108108 \n
一、向量代数108 \n
(一)空间直角坐标系108 \n
(二)向量的基本概念108 \n
(三)向量的运算109 \n
(四)向量的关系111 \n
二、空间解析几何111 \n
(一)平面与直线111 \n
(二)曲面与空间曲线114 \n
题型一——向量的运算及性质117 \n
题型二——空间平面与直线119 \n
题型三——曲面与空间曲线123 \n
一、选择题125 \n
二、填空题126 \n
三、解答题126 \n
同步习题参考答案127 \n
第五章多元函数微分学132132 \n
一、基本概念132 \n
(一)多元函数132 \n
(二)二元函数的极限与连续132 \n
(三)二元函数的偏导数与全微分133 \n
二、偏导数的计算135 \n
(一)复合函数的偏导数135 \n
(二)隐函数的偏导数136 \n
三、偏导数的应用137 \n
(一)极值137 \n
(二)连续函数在有界闭区域上的值问题138 \n
(三)几何应用139 \n
题型一——多元函数的极限、连续及偏导140 \n
题型二——多元函数求偏导143 \n
题型三——多元函数微分学的应用147 \n
一、选择题151 \n
二、填空题151 \n
三、解答题152 \n
同步习题参考答案152 \n
第六章多元函数积分学158158 \n
一、重积分158 \n
(一)二重积分158 \n
(二)三重积分161 \n
二、曲线积分164 \n
(一)类曲线积分164 \n
(二)第二类曲线积分165 \n
(三)两类曲线积分的关系168 \n
三、曲面积分168 \n
(一)类曲面积分168 \n
(二)第二类曲面积分170 \n
(三)两类曲面积分的关系171 \n
四、场论171(一)梯度171 \n
(二)通量172(三)散度172(四)旋度172 \n
题型一——二重积分的计算172 \n
题型二——三重积分的计算177 \n
题型三——类曲线积分179 \n
题型四——第二类曲线积分179 \n
题型五——类曲面积分184 \n
题型六——第二类曲面积分185 \n
题型七——场论相关问题188 \n
一、选择题188 \n
二、填空题189 \n
三、解答题189 \n
同步习题参考答案191 \n
第七章无穷级数199199 \n
一、常数项级数199 \n
(一)级数的概念及性质199 \n
(二)级数的收敛准则200 \n
(三)两个重要级数203 \n
二、幂级数203 \n
(一)函数项级数及和函数203 \n
(二)幂级数及其收敛性203 \n
(三)幂级数的性质204 \n
(四)函数展开成幂级数204 \n
三、傅里叶级数206 \n
(一)三角函数系206 \n
(二)傅里叶级数206 \n
(三)收敛定理207 \n
(四)函数的傅里叶展开207 \n
题型一——常数项级数的敛散性208 \n
题型二——幂级数213 \n
题型三——傅里叶级数217 \n
一、选择题218 \n
二、填空题218 \n
三、解答题218 \n
同步习题参考答案219 \n
第八章常微分方程224224 \n
一、基本概念224 \n
(一)微分方程及阶的概念224 \n
(二)微分方程的解、通解、特解224 \n
(三)线性微分方程224 \n
二、一阶微分方程的求解225 \n
(一)变量可分离的微分方程225 \n
(二)齐次微分方程225 \n
(三)一阶线性微分方程226 \n
(四)伯努利方程226 \n
(五)全微分方程227 \n
(六)可用简单的变量代换求解的微分方程 \n
三、可降阶的高阶微分方程227 \n
(一)y(n)=f(x)型227(二)y″=f(x,y′)型228(三)y″=f(y,y′)型228 \n
四、二阶及高于二阶的常系数线性微分方程的求解228 \n
(一)线性微分方程解的性质及解的结构定理228 \n
(二)二阶常系数齐次线性微分方程229 \n
(三)n阶常系数齐次线性微分方程230 \n
(四)二阶常系数非齐次线性微分方程230 \n
(五)欧拉方程230 \n
231题型一——一阶微分方程231 \n
题型二——可降阶的高阶微分方程235 \n
题型三——二阶及高于二阶的常系数线性微分方程236 \n
题型四——欧拉方程239题型五——微分方程的应用240 \n
一、选择题241二、填空题241三、解答题241同步习题参考答案242 \n
章行列式248248 \n
一、行列式的相关概念248 \n
(一)排列与逆序248 \n
(二)行列式248 \n
(三)余子式与代数余子式249 \n
二、行列式的性质249 \n
三、行列式的计算公式251 \n
(一)行列式展开定理251 \n
(二)低阶行列式的计算公式251 \n
(三)上(下)三角形行列式251 \n
(四)两个特殊的拉普拉斯展开式252 \n
(五)范德蒙德行列式252 \n
题型一——对行列式相关概念的考查252 \n
题型二——行列式的计算255 \n
一、选择题262 \n
二、填空题262 \n
三、解答题263 \n
同步习题参考答案264 \n
第二章矩阵268268 \n
一、矩阵的相关概念268 \n
(一)矩阵的定义268 \n
(二)几类特殊的矩阵268 \n
二、矩阵的运算269 \n
(一)矩阵的线性运算269 \n
(二)矩阵的乘法270 \n
(三)矩阵的转置271 \n
(四)方阵的行列式271 \n
三、逆矩阵271 \n
(一)逆矩阵的定义271 \n
(二)可逆矩阵的性质272 \n
(三)伴随矩阵272 \n
(四)矩阵可逆的充要条件273 \n
四、矩阵的初等变换和初等矩阵273 \n
(一)基本概念273 \n
(二)重要公式与定理274 \n
五、矩阵的秩274 \n
(一)矩阵的k阶子式274 \n
(二)矩阵的秩274 \n
(三)矩阵秩的相关性质275 \n
六、分块矩阵275 \n
(一)定义275 \n
(二)运算法则275 \n
(三)分块矩阵的常用结论276 \n
题型一——矩阵的基本运算及性质276 \n
题型二——逆矩阵及伴随矩阵的计算281 \n
题型三——初等矩阵与初等变换284 \n
题型四——矩阵的秩286 \n
题型五——分块矩阵287 \n
一、选择题289 \n
二、填空题290 \n
三、解答题290 \n
同步习题参考答案291 \n
第三章向量296296 \n
一、向量及其性质296 \n
(一)向量296 \n
(二)线性组合与线性表示297 \n
(三)向量组的线性相关性298 \n
二、向量组的极大线性无关组和秩299 \n
(一)向量组的极大线性无关组299 \n
(二)向量组的秩300 \n
(三)矩阵的秩与向量组的秩的关系300 \n
三、向量的内积与正交性301 \n
(一)向量的内积301 \n
(二)正交向量组和规范正交向量组301 \n
(三)施密特正交化302 \n
四、向量空间302 \n
(一)基本概念302 \n
(二)重要公式和定理303 \n
题型一——向量的线性相关与线性表出303 \n
题型二——内积与正交309 \n
题型三——极大线性无关组与秩309 \n
题型四——向量空间311 \n
一、选择题311 \n
二、填空题312 \n
三、解答题312 \n
同步习题参考答案313 \n
第四章线性方程组317317 \n
一、基本概念317 \n
(一)线性方程组317 \n
(二)线性方程组的矩阵317 \n
(三)高斯消元法318 \n
二、线性方程组解的判定318 \n
(一)解的存在性318 \n
(二)解的唯一性319 \n
三、线性方程组解的结构319 \n
(一)线性方程组解的性质319 \n
(二)基础解系与通解319 \n
四、克拉默法则321 \n
题型一——线性方程组解的判定322 \n
题型二——线性方程组解的结构326 \n
一、选择题331二、填空题332三、解答题333同步习题参考答案333 \n
第五章矩阵的特征值和特征向量340340 \n
一、特征值和特征向量340 \n
(一)特征值和特征向量的定义340 \n
(二)特征值和特征向量的性质340 \n
(三)特征值和特征向量的求解341 \n
二、矩阵的相似342 \n
(一)相似矩阵的定义342 \n
(二)相似矩阵的性质342 \n
三、相似对角化342 \n
(一)相似对角化的定义342 \n
(二)矩阵相似对角化的相关定理343 \n
(三)矩阵对角化的方法343 \n
四、实对称矩阵343 \n
(一)实对称矩阵特征值和特征向量的性质343 \n
(二)实对称矩阵正交相似对角化的方法344 \n
题型一——特征值和特征向量344 \n
题型二——矩阵的相似349 \n
题型三——实对称矩阵354 \n
一、选择题356 \n
二、填空题356 \n
三、解答题357 \n
同步习题参考答案358 \n
第六章二次型365365 \n
一、二次型及其合同标准形365 \n
(一)二次型及其矩阵365 \n
(二)合同变换365 \n
(三)二次型的合同标准形366 \n
二、惯性指数与合同规范形367 \n
(一)惯性指数367 \n
(二)二次型的合同规范形367 \n
(三)惯性定理368 \n
三、正定二次型368 \n
(一)正定二次型的定义368 \n
(二)正定二次型的性质368 \n
(三)二次型正定的充要条件368 \n
题型一——二次型及标准形369 \n
题型二——惯性定理与合同374 \n
题型三——正定二次