统计学习理论与方法(R语言版)
作 者: 左飞
出版时间: 2020
内容简介
本书从统计学观点出发,以数理统计为基础,全面系统地介绍了统计机器学习的主要方法。内容涉及回归(线性回归、多项式回归、非线性回归、岭回归,以及LASSO等)、分类(感知机、逻辑回归、朴素贝叶斯、决策树、支持向量机、人工神经网络等)、聚类(K均值、EM算法、密度聚类等)、蒙特卡洛采样(拒绝采样、自适应拒绝采样、重要性采样、吉布斯采样和马尔科夫链蒙特卡洛等)、降维与流形学习(SVD、PCA和MDS等),以及概率图模型基础等话题。此外,为方便读者自学,本书还扼要地介绍了机器学习中所必备的数学知识(包括概率论与数理统计、凸优化及泛函分析基础等)。 本书是统计机器学习及相关课程的教学参考书,适用于高等院校人工智能、机器学习或数据挖掘等相关专业的师生研习之用,也可供从事计算机应用,特别是数据科学相关专业的研发人员参考。