欢迎访问学兔兔,学习、交流 分享 !

返回首页 |

百面深度学习:算法工程师带你去面试 葫芦娃 2020年版

收藏
  • 大小:57.39 MB
  • 语言:中文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
百面深度学习:算法工程师带你去面试
作者: 葫芦娃
出版时间:2020年版
内容简介
  深度学习是目前学术界和工业界都非常火热的话题,在许多行业有着成功应用。本书由Hulu的近30位算法研究员和算法工程师共同编写完成,专门针对深度学习领域,是《百面机器学习:算法工程师带你去面试》的延伸。全书内容大致分为两个部分,第一部分介绍经典的深度学习算法和模型,包括卷积神经网络、循环神经网络、图神经网络、生成模型、生成式对抗网络、强化学习、元学习、自动化机器学习等;第二部分介绍深度学习在一些领域的应用,包括计算机视觉、自然语言处理、推荐系统、计算广告、视频处理、计算机听觉、自动驾驶等。本书仍然采用知识点问答的形式来组织内容,每个问题都给出了难度级和相关知识点,以督促读者进行自我检查和主动思考。书中每个章节精心筛选了对应领域的不同方面、不同层次上的问题,相互搭配,展示深度学习的“百面”精彩,让不同读者都能找到合适的内容。本书适合相关专业的在校学生检查和加强对所学知识点的掌握程度,求职者快速复习和补充相关的深度学习知识,以及算法工程师作为工具书随时参阅。此外,非相关专业、但对人工智能或深度学习感兴趣的研究人员,也可以通过本书大致了解一些热门的人工智能应用、深度学习模型背后的核心算法及其思想。
目录
前言

第 一部分 算法和模型

第 1章 卷积神经网络

01 卷积基础知识

02 卷积的变种

03 卷积神经网络的整体结构

04 卷积神经网络的基础模块

参考文献

第 2章 循环神经网络

01 循环神经网络与序列建模

02 循环神经网络中的Dropout

03 循环神经网络中的长期依赖问题

04 长短期记忆网络

05 Seq2Seq 架构

参考文献

第3章 图神经网络

01 图神经网络的基本结构

02 图神经网络在推荐系统中的应用

03 图神经网络的推理能力

参考文献

第4章 生成模型

01 深度信念网络与深度波尔兹曼机

02 变分自编码器基础知识

03 变分自编码器的改进

04 生成式矩匹配网络与深度自回归网络

参考文献

第5章 生成式对抗网络

01 生成式对抗网络的基本原理

02 生成式对抗网络的改进

03 生成式对抗网络的效果评估

04 生成式对抗网络的应用

参考文献

第6章 强化学习

01 强化学习基础知识

02 强化学习算法

03 深度强化学习

04 强化学习的应用

参考文献

第7章 元学习

01 元学习的主要概念

02 元学习的主要方法

03 元学习的数据集准备

04 元学习的两个简单模型

05 基于度量学习的元学习模型

06 基于神经图灵机的元学习模型

07 基于学习优化器的元学习模型

08 基于学习初始点的元学习模型

参考文献

第8章 自动化机器学习

01 自动化机器学习的基本概念

02 模型和超参数自动化调优

03 神经网络架构搜索

参考文献

第二部分 应用

第9章 计算机视觉

01 物体检测

02 图像分割

03 光学字符识别

04 图像标注

05 人体姿态识别

参考文献

第 10章 自然语言处理

01 语言的特征表示

02 机器翻译

03 问答系统

04 对话系统

参考文献

第 11章 推荐系统

01 推荐系统基础

02 推荐系统设计与算法

03 推荐系统评估

参考文献

第 12章 计算广告

01 点击率预估

02 广告召回

03 广告投放策略

参考文献

第 13章 视频处理

01 视频编解码

02 视频监控

03 图像质量评价

04 超分辨率重建

05 网络通信

参考文献

第 14章 计算机听觉

01 音频信号的特征提取

02 自动语音识别

03 音频事件识别

参考文献

第 15章 自动驾驶

01 自动驾驶的基本概念

02 端到端的自动驾驶模型

03 自动驾驶的决策系统

参考文献

作者随笔
下载地址