机器学习经典算法实践
作者: 肖云鹏
出版时间:2018年版
内容简介
本书是为大学本科、研究生学习参考材料,以讲原理、完全开放源代码、使用公开数据集、实验效果演示为特色。既适合本科生、研究生教学使用,也适合自学。 为了配合教师教学及同学们自学,本书提供了配套教学的ppt和所有章节的源代码。
目录
目录
●第1章KNN
1.1KNN算法原理
1.1.1算法引入
1.1.2科学问题
1.1.3算法流程
1.1.4算法描述
1.1.5补充说明
1.2KNN算法实现
1.2.1简介
1.2.2核心代码
1.3实验数据
1.4实验结果
1.4.1结果展示
1.4.2结果分析
●第2章朴素贝叶斯
2.1朴素贝叶斯算法原理
2.1.1朴素贝叶斯算法引入
2.1.2科学问题
2.1.3算法流程
2.1.4算法描述
2.1.5算法补充
2.2朴素贝叶斯算法实现
2.2.1简介
2.2.2核心代码
2.3实验数据
2.4实验结果
2.4.1结果展示
2.4.2结果分析
●第3章C4.5
3.1C4.5算法原理
3.1.1C4.5算法引入
3.1.2科学问题
3.1.3算法流程
3.1.4算法描述
3.1.5补充说明
3.2C4.5算法实现
3.2.1简介
3.2.2核心代码
3.3实验数据
3.4实验结果
3.4.1结果展示
3.4.2结果分析
●第4章SVM
4.1SVM算法原理
4.1.1算法引入
4.1.2科学问题
4.1.3算法流程
4.1.4算法描述
4.1.5补充说明
4.2SVM算法实现
4.2.1简介
4.2.2核心代码
4.3实验数据
4.4实验结果
4.4.1结果展示
4.4.2结果分析
●第5章AdaBoost
5.1AdaBoost算法原理
5.1.1算法引入
5.1.2科学问题
5.1.3算法流程
5.1.4算法描述
5.1.5补充说明
5.2AdaBoost算法实现
5.2.1简介
5.2.2核心代码
5.3实验数据
5.4实验结果
5.4.1结果展示
5.4.2结果分析
●第6章CART
6.1CART算法原理
6.1.1算法引入
6.1.2科学问题
6.1.3算法流程
6.1.4算法描述
6.1.5补充说明
6.2CART算法实现
6.2.1简介
6.2.2核心代码
6.3实验数据
6.4实验结果
6.4.1结果展示
6.4.2结果分析
●第7章KMeans
7.1KMeans算法原理
7.1.1算法引入
7.1.2科学问题
7.1.3算法流程
7.1.4算法描述
7.1.5补充说明
7.2KMeans算法实现
7.2.1简介
7.2.2核心代码
7.3实验数据
7.4实验结果
7.4.1结果展示
7.4.2结果分析
●第8章Apriori
8.1Apriori算法原理
8.1.1算法引入
8.1.2科学问题
8.1.3算法流程
8.1.4算法描述
8.2Apriori算法实现
8.2.1简介
8.2.2核心代码
8.3实验数据
8.4实验结果
8.4.1结果展示
8.4.2结果分析
●第9章PageRank
9.1PageRank算法原理
9.1.1PageRank算法引入
9.1.2科学问题
9.1.3算法流程
9.1.4算法描述
9.2PageRank算法实现
9.2.1简介
9.2.2核心代码
9.3实验数据
9.4实验结果
9.4.1结果展示
9.4.2结果分析
●第10章EM
10.1EM算法原理
10.1.1EM算法引入
10.1.2科学问题
10.1.3理论推导
10.1.4算法流程
10.1.5算法描述
10.2EMGMM实现
10.2.1简介
10.2.2核心代码
10.3实验数据
10.4实验结果
10.4.1结果展示
10.4.2结果分析
参考文献