欢迎访问学兔兔,学习、交流 分享 !

返回首页 |

边缘计算 雾计算研究与应用 英文版 林福宏等著 2018年版

收藏
  • 大小:59.77 MB
  • 语言:英文版
  • 格式: PDF文档
  • 阅读软件: Adobe Reader
资源简介
边缘计算 雾计算研究与应用 英文版
作者: 林福宏等著
出版时间:2018年版
内容简介
The main goalof this book is sharing the recent achievements of Edge & Fog Computing inour lab. It contains three parts. In the first part, we focus on the resourcemanagement in Edge & Fog Computing including Resource Caching Scheme in FogComputing, Radio Resource Management in 5GFog Cell, Transmission of Malware in Fog Computing, Incentive to ContributeResource-based Crowd funding in Fog Computing, Resource Scheduling Scheme inFog Computing, Resource sharing Model in Fog Computing, and Fair ResourceAllocation in IDS for Edge Computing. In the second part, we introduce thesecurity management in Edge & Fog Computing including Security Model in FogComputing, Node State Monitoring Scheme in Fog Computing, IDS Model in FogComputing, Key Management Scheme in Fog Computing, Intrusion Response Strategyin Fog Computing, Intrusion Detection in Fog Computing, and Security Mechanismin Fog Computing. In the third part, we propose some applications of Edge &Fog Computing. They are Real-time Fast Bi-dimensional Empirical ModeDecomposition, Resource Management Scheme in Vehicular Social Edge Computing,and Real-time Image Restoration in Edge Computing.
目录
Contents
PART Ⅰ: Resource Management in Edge & Fog Computing
1 SteinerTree based Optimal Resource Caching Scheme in Fog Computing
1.1 Introduction
1.2 Related work
1.3 Problem formulation
1.4 Algorithm design
1.5 Running illustration
1.6 Numerical simulation
1.7 Conclusion
References
2 HypergraphBased Radio Resource Management in 5G Fog Cell
2.1 Introduction
2.2 Related work
2.3 Network architecture of fogcomputing in 5G
2.4 Radio resource management ofhypergraph partitioning in 5G Fog Cell
2.4.1 Task model
2.4.2 Hypergraph model of 5G FogCell resource pool
2.4.3 Hypergraph cluster andresource allocation
2.5 Numerical simulation
2.6 Conclusion
References
……
18.1 Introduction
18.2 Background materials
18.2.1 Fruitfly optimization algorithm (FOA)
18.2.2 Support vector machine (SVM)
18.3 Theproposed methodology
18.3.1 Process of image restoration processing
18.3.2 Optimization algorithm of TFOA based on LSSVR
18.4 Experiment and application
18.4.1 Parameter optimization analysis of TFOA
18.4.2 Imagerestoration analysis of LSSVM- TFOA
18.5 Conclusion
References
下载地址