材料的高温变形与断裂(英文版)
出版时间:2010年版
内容简介
《材料的高温变形与断裂(英文版)》内容分两篇共25章。上篇为高温变形篇,包括金属与合金蠕变的宏观规律、蠕变位错亚结构、纯金属蠕变、固溶体合金蠕变、第二相粒子强化合金蠕变、扩散蠕变、超塑性以及多轴蠕变等内容,重点论述蠕变过程中位错与各种晶体缺陷的交互作用、蠕变微观机制以及蠕变物理模型和理论。下篇为高温断裂篇,包括蠕变空洞形核和长大、蠕变裂纹扩展、蠕变损伤与断裂的评价与预测、高温低周疲劳断裂、蠕变疲劳交互作用以及材料的高温环境损伤等内容,从微观、宏观和唯象三个层次论述了高温断裂理论及其工程应用。《材料的高温变形与断裂(英文版)》可作为高等院校材料学科研究生教学参考书,也可供材料、固体物理和力学专业教师及科研人员参考。
目录
Author contact details
Preface
Part I High Temperature Deformation
1 Creep Behavior of Materials
1.1 Creep Curve
1.2 Stress and Temperature Dependence of Creep Rate
1.3 Stacking Fault Energy Effect
1.4 Grain Size Effect
References
2 Evolution of Dislocation Substructures During Creep
2.1 Parameters of Dislocation Substructures and Their Measurements
2.2 Evolution of Dislocation Substructure during Creep
2.3 Dislocation Substructure of Steady State Creep
2.4 Inhomogeneous Dislocation Substructure and Long-Range
Internal Stress
References
3 Dislocation Motion at Elevated Temperatures
3.1 Thermally Activated Glide of Dislocation
3.2 Measurement of Internal Stress
3.3 Climb of Dislocations
3.4 Basic Equations of Recovery Creep
3.5 Mechanisms of Recovery
References
4 Recovery-Creep Theories of Pure Metals
4.1 Introduction
4.2 Weertman Model
4.3 Models Considering Sub-Boundary
4.4 Models Based on Dislocation Network
4.5 Creep Model Based on the Motion of Jogged Screw Dislocation
4.6 Summary of Recovery Creep Models
4.7 Soft and Hard Region Composite Model
4.8 Harper-Dorn Creep
References
5 Creep of Solid Solution Alloys
5.1 Interaction Between Dislocation and Solute Atom
5.2 Creep Behavior of Solid Solution Alloys
5.3 Viscous Glide Velocity of Dislocations
5.4 Creep Controlled by Viscous Glide of Dislocations
References
6 Creep of Second Phase Particles Strengthened Materials
6.1 Introduction
6.2 Arzt-Ashby Model
6.3 Creep Model Based on Attractive Particle-Dislocation Interaction
6.4 Interaction of Dislocation with Localized Particles
6.5 Mechanisms of Particle Strengthening
6.6 Grain Boundary Precipitation Strengthening
References
7 Creep of Particulates Reinforced Composite Material
7.1 Creep Behavior of Particulates Reinforced Aluminium
Matrix Composites
7.2 Determination of Threshold Stress
7.3 Creep Mechanisms and Role of Reinforcement Phase
References
8 High Temperature Deformation of Intermetallic Compounds
8.1 Crystal Structures, Dislocations and Planar Defects
8.2 Dislocation Core Structure
8.3 Slip Systems and Flow Stresses of Intermetallic Compounds
8.4 Creep of Interrnetallic Compounds
8.5 Creep of Compound-Based ODS Alloys
References
9 Diffusional Creep
9.1 Theory on Diffusional Creep
9.2 Accommodation of Diffusional Creep.Grain Boundary Sliding
9.3 Diffusional Creep Controlled by Boundary Reaction
9.4 Experimental Evidences of Diffusional Creep
10 Superplasticity
10.1 Stability of Deformation
10.2 General Characteristics of Superplasticity
10.3 Microstructure Characteristics of Superplasticity
10.4 Grain Boundary Behaviors in Superplastic Deformation
10.5 Mechanism of Superplastic Deformation
10.6 The maximum Strain Rate for Superplasticity
References
11 Mechanisms of Grain Boundary Sliding
11.1 Introduction
11.2 Intrinsic Grain Boundary Sliding
11.3 Extrinsic Grain Boundary Sliding
References
12 Multiaxial Creep Models
12.1 Uniaxial Creep Models
12.2 Mutiaxial Creep Models
12.3 Mutiaxial Steady State Creep Model
12.4 Stress Relaxation by Creep
References
Part II High Temperature Fracture
13 Nucleation of Creep Cavity
13.1 Introduction
13.2 Nucleation Sites of Cavity
13.3 Theory of Cavity Nucleation
13.4 Cavity Nucleation Rate
References
14 Creep Embrittlement by Segregation of Impurities
14.1 Nickel and Nickel-Base Superalloys
14.2 Low-Alloy Steels
References
15 Diffusional Growth of Creep Cavities
15.1 Chemical Potential of Vacancies
15.2 Hull-Rimmer Model for Cavity Growth
15.3 Speight-Harris Model for Cavity Growth
15.4 The role of Surface Diffusion
16 Cavity Growth by Coupled Diffusion and Creep
16.1 Monkman-Grant Relation
16.2 Beer-Speight Model
16.3 Edward-Ashby Model
16.4 Chen-Argon model
16.5 Cocks-Ashby Model
References
17 Constrained Growth of Creep Cavities
17.1 Introduction
17.2 Rice Model
17.3 Raj-Ghosh Model
17.4 Cocks-Ashby Model
References
18 Nucleation and Growth of Wedge-Type Microcracks
18.1 Introduction
18.2 Nucleation of Wedge-Type Cracks
18.3 The Propagation of Wedge-Type Cracks
18.4 Crack Growth by Cavitation
References
19 Creep Crack Growth
19.1 Crack-Tip Stress Fields in Elastoplastic Body
19.2 Stress Field at Steady-State-Creep Crack Tip
19.3 The Crack Tip Stress Fields in Transition Period
19.4 Vitek Model for Creep Crack Tip Fields
19.5 The Influence of Creep Threshold Stress
19.6 The Experimental Results for Creep Crack Growth
References
20 Creep Damage Mechanics
20.1 Introduction to the Damage Mechanics
20.2 Damage Variable and Effective Stress
20.3 Kachanov Creep Damage Theory
20.4 Rabotnov Creep Damage Theory
20.5 Three-Dimensional Creep Damage Theory
References
21 Creep Damage Physics
21.1 Introduction
21.2 Loss of External Section
21.3 Loss of Internal Section
21.4 Degradation of Microstructure
21.5 Damage by Oxidation
References
22 Prediction of Creep Rupture Life
22.1 Extrapolation Methods of Creep Rupture Life
22.2 θ Projection Method
22.3 Maruyama Parameter
22.4 Reliability of Prediction for Creep Rupture Property
References
23 Creep-Fatigue Interaction
23.1 Creep Fatigue Waveforms
23.2 Creep-Fatigue Failure Maps
23.3 Holding Time Effects on Creep-Fatigue Lifetime
23.4 Fracture Mechanics of Creep Fatigue Crack Growth
References
24 Prediction of Creep-Fatigue Life
24.1 Linear Damage Accumulation Rule
24.2 Strain Range Partitioning
24.3 Damage Mechanics Method
24.4 Damage Function Method
24.5 Empirical Methods
References
25 Environmental Damage at High Temperature
25.1 Oxidation
25.2 Hot Corrosion
25.3 Carburization
References
Appendix A
Appendix B
Index